亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We establish the capacity of a class of communication channels introduced in [1]. The $n$-letter input from a finite alphabet is passed through a discrete memoryless channel $P_{Z|X}$ and then the output $n$-letter sequence is uniformly permuted. We show that the maximal communication rate (normalized by $\log n$) equals $1/2 (rank(P_{Z|X})-1)$ whenever $P_{Z|X}$ is strictly positive. This is done by establishing a converse bound matching the achievability of [1]. The two main ingredients of our proof are (1) a sharp bound on the entropy of a uniformly sampled vector from a type class and observed through a DMC; and (2) the covering $\epsilon$-net of a probability simplex with Kullback-Leibler divergence as a metric. In addition to strictly positive DMC we also find the noisy permutation capacity for $q$-ary erasure channels, the Z-channel and others.

相關內容

The phase retrieval problem is concerned with recovering an unknown signal $\bf{x} \in \mathbb{R}^n$ from a set of magnitude-only measurements $y_j=|\langle \bf{a}_j,\bf{x} \rangle|, \; j=1,\ldots,m$. A natural least squares formulation can be used to solve this problem efficiently even with random initialization, despite its non-convexity of the loss function. One way to explain this surprising phenomenon is the benign geometric landscape: (1) all local minimizers are global; and (2) the objective function has a negative curvature around each saddle point and local maximizer. In this paper, we show that $m=O(n \log n)$ Gaussian random measurements are sufficient to guarantee the loss function of a commonly used estimator has such benign geometric landscape with high probability. This is a step toward answering the open problem given by Sun-Qu-Wright, in which the authors suggest that $O(n \log n)$ or even $O(n)$ is enough to guarantee the favorable geometric property.

We study reinforcement learning for two-player zero-sum Markov games with simultaneous moves in the finite-horizon setting, where the transition kernel of the underlying Markov games can be parameterized by a linear function over the current state, both players' actions and the next state. In particular, we assume that we can control both players and aim to find the Nash Equilibrium by minimizing the duality gap. We propose an algorithm Nash-UCRL based on the principle "Optimism-in-Face-of-Uncertainty". Our algorithm only needs to find a Coarse Correlated Equilibrium (CCE), which is computationally efficient. Specifically, we show that Nash-UCRL can provably achieve an $\tilde{O}(dH\sqrt{T})$ regret, where $d$ is the linear function dimension, $H$ is the length of the game and $T$ is the total number of steps in the game. To assess the optimality of our algorithm, we also prove an $\tilde{\Omega}( dH\sqrt{T})$ lower bound on the regret. Our upper bound matches the lower bound up to logarithmic factors, which suggests the optimality of our algorithm.

This paper introduces a new simulation-based inference procedure to model and sample from multi-dimensional probability distributions given access to i.i.d. samples, circumventing the usual approaches of explicitly modeling the density function or designing Markov chain Monte Carlo. Motivated by the seminal work on distance and isomorphism between metric measure spaces, we propose a new notion called the Reversible Gromov-Monge (RGM) distance and study how RGM can be used to design new transform samplers to perform simulation-based inference. Our RGM sampler can also estimate optimal alignments between two heterogeneous metric measure spaces $(\mathcal{X}, \mu, c_{\mathcal{X}})$ and $(\mathcal{Y}, \nu, c_{\mathcal{Y}})$ from empirical data sets, with estimated maps that approximately push forward one measure $\mu$ to the other $\nu$, and vice versa. Analytic properties of the RGM distance are derived; statistical rate of convergence, representation, and optimization questions regarding the induced sampler are studied. Synthetic and real-world examples showcasing the effectiveness of the RGM sampler are also demonstrated.

Let ${\mathcal M}\subset {\mathbb R}^n$ be a $C^2$-smooth compact submanifold of dimension $d$. Assume that the volume of ${\mathcal M}$ is at most $V$ and the reach (i.e. the normal injectivity radius) of ${\mathcal M}$ is greater than $\tau$. Moreover, let $\mu$ be a probability measure on ${\mathcal M}$ whose density on ${\mathcal M}$ is a strictly positive Lipschitz-smooth function. Let $x_j\in {\mathcal M}$, $j=1,2,\dots,N$ be $N$ independent random samples from distribution $\mu$. Also, let $\xi_j$, $j=1,2,\dots, N$ be independent random samples from a Gaussian random variable in ${\mathbb R}^n$ having covariance $\sigma^2I$, where $\sigma$ is less than a certain specified function of $d, V$ and $\tau$. We assume that we are given the data points $y_j=x_j+\xi_j,$ $j=1,2,\dots,N$, modelling random points of ${\mathcal M}$ with measurement noise. We develop an algorithm which produces from these data, with high probability, a $d$ dimensional submanifold ${\mathcal M}_o\subset {\mathbb R}^n$ whose Hausdorff distance to ${\mathcal M}$ is less than $Cd\sigma^2/\tau$ and whose reach is greater than $c{\tau}/d^6$ with universal constants $C,c > 0$. The number $N$ of random samples required depends almost linearly on $n$, polynomially on $\sigma^{-1}$ and exponentially on $d$.

Heavy ball momentum is a popular acceleration idea in stochastic optimization. There have been several attempts to understand its perceived benefits, but the complete picture is still unclear. Specifically, the error expression in the presence of noise has two separate terms: the bias and the variance, but most existing works only focus on bias and show that momentum accelerates its decay. Such analyses overlook the interplay between bias and variance and, therefore, miss important implications. In this work, we analyze a sample complexity bound of stochastic approximation algorithms with heavy-ball momentum that accounts for both bias and variance. We find that for the same step size, which is small enough, the iterates with momentum have improved sample complexity compared to the ones without. However, by using a different step-size sequence, the non-momentum version can nullify this benefit. Subsequently, we show that our sample complexity bounds are indeed tight for a small enough neighborhood around the solution and large enough noise variance. Our analysis also sheds some light on the finite-time behavior of these algorithms. This explains the perceived benefit in the initial phase of momentum-based schemes.

When researchers carry out a null hypothesis significance test, it is tempting to assume that a statistically significant result lowers Prob(H0), the probability of the null hypothesis being true. Technically, such a statement is meaningless for various reasons: e.g., the null hypothesis does not have a probability associated with it. However, it is possible to relax certain assumptions to compute the posterior probability Prob(H0) under repeated sampling. We show in a step-by-step guide that the intuitively appealing belief, that Prob(H0) is low when significant results have been obtained under repeated sampling, is in general incorrect and depends greatly on: (a) the prior probability of the null being true; (b) type-I error rate, (c) type-II error rate, and (d) replication of a result. Through step-by-step simulations using open-source code in the R System of Statistical Computing, we show that uncertainty about the null hypothesis being true often remains high despite a significant result. To help the reader develop intuitions about this common misconception, we provide a Shiny app (//danielschad.shinyapps.io/probnull/). We expect that this tutorial will help researchers better understand and judge results from null hypothesis significance tests.

While the theoretical analysis of evolutionary algorithms (EAs) has made significant progress for pseudo-Boolean optimization problems in the last 25 years, only sporadic theoretical results exist on how EAs solve permutation-based problems. To overcome the lack of permutation-based benchmark problems, we propose a general way to transfer the classic pseudo-Boolean benchmarks into benchmarks defined on sets of permutations. We then conduct a rigorous runtime analysis of the permutation-based $(1+1)$ EA proposed by Scharnow, Tinnefeld, and Wegener (2004) on the analogues of the \textsc{LeadingOnes} and \textsc{Jump} benchmarks. The latter shows that, different from bit-strings, it is not only the Hamming distance that determines how difficult it is to mutate a permutation $\sigma$ into another one $\tau$, but also the precise cycle structure of $\sigma \tau^{-1}$. For this reason, we also regard the more symmetric scramble mutation operator. We observe that it not only leads to simpler proofs, but also reduces the runtime on jump functions with odd jump size by a factor of $\Theta(n)$. Finally, we show that a heavy-tailed version of the scramble operator, as in the bit-string case, leads to a speed-up of order $m^{\Theta(m)}$ on jump functions with jump size~$m$.%

Universal coding of integers~(UCI) is a class of variable-length code, such that the ratio of the expected codeword length to $\max\{1,H(P)\}$ is within a constant factor, where $H(P)$ is the Shannon entropy of the decreasing probability distribution $P$. However, if we consider the ratio of the expected codeword length to $H(P)$, the ratio tends to infinity by using UCI, when $H(P)$ tends to zero. To solve this issue, this paper introduces a class of codes, termed generalized universal coding of integers~(GUCI), such that the ratio of the expected codeword length to $H(P)$ is within a constant factor $K$. First, the definition of GUCI is proposed and the coding structure of GUCI is introduced. Next, we propose a class of GUCI $\mathcal{C}$ to achieve the expansion factor $K_{\mathcal{C}}=2$ and show that the optimal GUCI is in the range $1\leq K_{\mathcal{C}}^{*}\leq 2$. Then, by comparing UCI and GUCI, we show that when the entropy is very large or $P(0)$ is not large, there are also cases where the average codeword length of GUCI is shorter. Finally, the asymptotically optimal GUCI is presented.

In the pooled data problem we are given a set of $n$ agents, each of which holds a hidden state bit, either $0$ or $1$. A querying procedure returns for a query set the sum of the states of the queried agents. The goal is to reconstruct the states using as few queries as possible. In this paper we consider two noise models for the pooled data problem. In the noisy channel model, the result for each agent flips with a certain probability. In the noisy query model, each query result is subject to random Gaussian noise. Our results are twofold. First, we present and analyze for both error models a simple and efficient distributed algorithm that reconstructs the initial states in a greedy fashion. Our novel analysis pins down the range of error probabilities and distributions for which our algorithm reconstructs the exact initial states with high probability. Secondly, we present simulation results of our algorithm and compare its performance with approximate message passing (AMP) algorithms that are conjectured to be optimal in a number of related problems.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司