亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When researchers carry out a null hypothesis significance test, it is tempting to assume that a statistically significant result lowers Prob(H0), the probability of the null hypothesis being true. Technically, such a statement is meaningless for various reasons: e.g., the null hypothesis does not have a probability associated with it. However, it is possible to relax certain assumptions to compute the posterior probability Prob(H0) under repeated sampling. We show in a step-by-step guide that the intuitively appealing belief, that Prob(H0) is low when significant results have been obtained under repeated sampling, is in general incorrect and depends greatly on: (a) the prior probability of the null being true; (b) type-I error rate, (c) type-II error rate, and (d) replication of a result. Through step-by-step simulations using open-source code in the R System of Statistical Computing, we show that uncertainty about the null hypothesis being true often remains high despite a significant result. To help the reader develop intuitions about this common misconception, we provide a Shiny app (//danielschad.shinyapps.io/probnull/). We expect that this tutorial will help researchers better understand and judge results from null hypothesis significance tests.

相關內容

“后(hou)驗”是(shi)指在考慮(lv)與所審查的(de)(de)特(te)定(ding)案件有關的(de)(de)相(xiang)關證據(ju)之后(hou)。類似(si)地,后(hou)驗概率(lv)分布是(shi)未(wei)知量(liang)(liang)的(de)(de)概率(lv)分布,視從實驗或調查獲得(de)的(de)(de)證據(ju)為(wei)條件,該未(wei)知量(liang)(liang)被視為(wei)隨機變量(liang)(liang)。

We establish optimal Statistical Query (SQ) lower bounds for robustly learning certain families of discrete high-dimensional distributions. In particular, we show that no efficient SQ algorithm with access to an $\epsilon$-corrupted binary product distribution can learn its mean within $\ell_2$-error $o(\epsilon \sqrt{\log(1/\epsilon)})$. Similarly, we show that no efficient SQ algorithm with access to an $\epsilon$-corrupted ferromagnetic high-temperature Ising model can learn the model to total variation distance $o(\epsilon \log(1/\epsilon))$. Our SQ lower bounds match the error guarantees of known algorithms for these problems, providing evidence that current upper bounds for these tasks are best possible. At the technical level, we develop a generic SQ lower bound for discrete high-dimensional distributions starting from low dimensional moment matching constructions that we believe will find other applications. Additionally, we introduce new ideas to analyze these moment-matching constructions for discrete univariate distributions.

Minimax optimization has served as the backbone of many machine learning (ML) problems. Although the convergence behavior of optimization algorithms has been extensively studied in minimax settings, their generalization guarantees in the stochastic setting, i.e., how the solution trained on empirical data performs on the unseen testing data, have been relatively underexplored. A fundamental question remains elusive: What is a good metric to study generalization of minimax learners? In this paper, we aim to answer this question by first showing that primal risk, a universal metric to study generalization in minimization, fails in simple examples of minimax problems. Furthermore, another popular metric, the primal-dual risk, also fails to characterize the generalization behavior for minimax problems with nonconvexity, due to non-existence of saddle points. We thus propose a new metric to study generalization of minimax learners: the primal gap, to circumvent these issues. Next, we derive generalization bounds for the primal gap in nonconvex-concave settings. As byproducts of our analysis, we also solve two open questions: establishing generalization bounds for primal risk and primal-dual risk in the strong sense, i.e., without strong concavity or assuming that the maximization and expectation can be interchanged, while either of these assumptions was needed in the literature. Finally, we leverage this new metric to compare the generalization behavior of two popular algorithms -- gradient descent-ascent (GDA) and gradient descent-max (GDMax) in stochastic minimax optimization.

Null hypothesis statistical significance testing (NHST) is the dominant approach for evaluating results from randomized controlled trials. Whereas NHST comes with long-run error rate guarantees, its main inferential tool -- the $p$-value -- is only an indirect measure of evidence against the null hypothesis. The main reason is that the $p$-value is based on the assumption the null hypothesis is true, whereas the likelihood of the data under any alternative hypothesis is ignored. If the goal is to quantify how much evidence the data provide for or against the null hypothesis it is unavoidable that an alternative hypothesis be specified (Goodman & Royall, 1988). Paradoxes arise when researchers interpret $p$-values as evidence. For instance, results that are surprising under the null may be equally surprising under a plausible alternative hypothesis, such that a $p=.045$ result (`reject the null') does not make the null any less plausible than it was before. Hence, $p$-values have been argued to overestimate the evidence against the null hypothesis. Conversely, it can be the case that statistically non-significant results (i.e., $p>.05)$ nevertheless provide some evidence in favor of the alternative hypothesis. It is therefore crucial for researchers to know when statistical significance and evidence collide, and this requires that a direct measure of evidence is computed and presented alongside the traditional $p$-value.

In longitudinal study, it is common that response and covariate are not measured at the same time, which complicates the analysis to a large extent. In this paper, we take into account the estimation of generalized varying coefficient model with such asynchronous observations. A penalized kernel-weighted estimating equation is constructed through kernel technique in the framework of functional data analysis. Moreover, local sparsity is also considered in the estimating equation to improve the interpretability of the estimate. We extend the iteratively reweighted least squares (IRLS) algorithm in our computation. The theoretical properties are established in terms of both consistency and sparsistency, and the simulation studies further verify the satisfying performance of our method when compared with existing approaches. The method is applied to an AIDS study to reveal its practical merits.

Information about action costs is critical for real-world AI planning applications. Rather than rely solely on declarative action models, recent approaches also use black-box external action cost estimators, often learned from data, that are applied during the planning phase. These, however, can be computationally expensive, and produce uncertain values. In this paper we suggest a generalization of deterministic planning with action costs that allows selecting between multiple estimators for action cost, to balance computation time against bounded estimation uncertainty. This enables a much richer -- and correspondingly more realistic -- problem representation. Importantly, it allows planners to bound plan accuracy, thereby increasing reliability, while reducing unnecessary computational burden, which is critical for scaling to large problems. We introduce a search algorithm, generalizing $A^*$, that solves such planning problems, and additional algorithmic extensions. In addition to theoretical guarantees, extensive experiments show considerable savings in runtime compared to alternatives.

We study the class of dependence models for spatial data obtained from Cauchy convolution processes based on different types of kernel functions. We show that the resulting spatial processes have appealing tail dependence properties, such as tail dependence at short distances and independence at long distances with suitable kernel functions. We derive the extreme-value limits of these processes, study their smoothness properties, and detail some interesting special cases. To get higher flexibility at sub-asymptotic levels and separately control the bulk and the tail dependence properties, we further propose spatial models constructed by mixing a Cauchy convolution process with a Gaussian process. We demonstrate that this framework indeed provides a rich class of models for the joint modeling of the bulk and the tail behaviors. Our proposed inference approach relies on matching model-based and empirical summary statistics, and an extensive simulation study shows that it yields accurate estimates. We demonstrate our new methodology by application to a temperature dataset measured at 97 monitoring stations in the state of Oklahoma, US. Our results indicate that our proposed model provides a very good fit to the data, and that it captures both the bulk and the tail dependence structures accurately.

We study the problem of high-dimensional sparse mean estimation in the presence of an $\epsilon$-fraction of adversarial outliers. Prior work obtained sample and computationally efficient algorithms for this task for identity-covariance subgaussian distributions. In this work, we develop the first efficient algorithms for robust sparse mean estimation without a priori knowledge of the covariance. For distributions on $\mathbb R^d$ with "certifiably bounded" $t$-th moments and sufficiently light tails, our algorithm achieves error of $O(\epsilon^{1-1/t})$ with sample complexity $m = (k\log(d))^{O(t)}/\epsilon^{2-2/t}$. For the special case of the Gaussian distribution, our algorithm achieves near-optimal error of $\tilde O(\epsilon)$ with sample complexity $m = O(k^4 \mathrm{polylog}(d))/\epsilon^2$. Our algorithms follow the Sum-of-Squares based, proofs to algorithms approach. We complement our upper bounds with Statistical Query and low-degree polynomial testing lower bounds, providing evidence that the sample-time-error tradeoffs achieved by our algorithms are qualitatively the best possible.

This work presents a new procedure for obtaining predictive distributions in the context of Gaussian process (GP) modeling, with a relaxation of the interpolation constraints outside some ranges of interest: the mean of the predictive distributions no longer necessarily interpolates the observed values when they are outside ranges of interest, but are simply constrained to remain outside. This method called relaxed Gaussian process (reGP) interpolation provides better predictive distributions in ranges of interest, especially in cases where a stationarity assumption for the GP model is not appropriate. It can be viewed as a goal-oriented method and becomes particularly interesting in Bayesian optimization, for example, for the minimization of an objective function, where good predictive distributions for low function values are important. When the expected improvement criterion and reGP are used for sequentially choosing evaluation points, the convergence of the resulting optimization algorithm is theoretically guaranteed (provided that the function to be optimized lies in the reproducing kernel Hilbert spaces attached to the known covariance of the underlying Gaussian process). Experiments indicate that using reGP instead of stationary GP models in Bayesian optimization is beneficial.

In practice, the use of rounding is ubiquitous. Although researchers have looked at the implications of rounding continuous random variables, rounding may be applied to functions of discrete random variables as well. For example, to infer on suicide excess deaths after a national emergency, authorities may provide a rounded average of deaths before and after the emergency started. Suicide rates tend to be relatively low around the world and such rounding may seriously affect inference on the change of suicide rate. In this paper, we study the scenario when a rounded to nearest integer average is used to estimate a non-negative discrete random variable. Specifically, our interest is in drawing inference on a parameter from the pmf of Y, when we get U = n[Y/n] as a proxy for Y. The probability generating function of U, E(U), and Var(U) capture the effect of the coarsening of the support of Y. Also, moments and estimators of distribution parameters are explored for some special cases. We show that under certain conditions, there is little impact from rounding. However, we also find scenarios where rounding can significantly affect statistical inference as demonstrated in two applications. The simple methods we propose are able to partially counter rounding error effects.

When algorithmic harms emerge, a reasonable response is to stop using the algorithm to resolve concerns related to fairness, accountability, transparency, and ethics (FATE). However, just because an algorithm is removed does not imply its FATE-related issues cease to exist. In this paper, we introduce the notion of the "algorithmic imprint" to illustrate how merely removing an algorithm does not necessarily undo or mitigate its consequences. We operationalize this concept and its implications through the 2020 events surrounding the algorithmic grading of the General Certificate of Education (GCE) Advanced (A) Level exams, an internationally recognized UK-based high school diploma exam administered in over 160 countries. While the algorithmic standardization was ultimately removed due to global protests, we show how the removal failed to undo the algorithmic imprint on the sociotechnical infrastructures that shape students', teachers', and parents' lives. These events provide a rare chance to analyze the state of the world both with and without algorithmic mediation. We situate our case study in Bangladesh to illustrate how algorithms made in the Global North disproportionately impact stakeholders in the Global South. Chronicling more than a year-long community engagement consisting of 47 inter-views, we present the first coherent timeline of "what" happened in Bangladesh, contextualizing "why" and "how" they happened through the lenses of the algorithmic imprint and situated algorithmic fairness. Analyzing these events, we highlight how the contours of the algorithmic imprints can be inferred at the infrastructural, social, and individual levels. We share conceptual and practical implications around how imprint-awareness can (a) broaden the boundaries of how we think about algorithmic impact, (b) inform how we design algorithms, and (c) guide us in AI governance.

北京阿比特科技有限公司