亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When algorithmic harms emerge, a reasonable response is to stop using the algorithm to resolve concerns related to fairness, accountability, transparency, and ethics (FATE). However, just because an algorithm is removed does not imply its FATE-related issues cease to exist. In this paper, we introduce the notion of the "algorithmic imprint" to illustrate how merely removing an algorithm does not necessarily undo or mitigate its consequences. We operationalize this concept and its implications through the 2020 events surrounding the algorithmic grading of the General Certificate of Education (GCE) Advanced (A) Level exams, an internationally recognized UK-based high school diploma exam administered in over 160 countries. While the algorithmic standardization was ultimately removed due to global protests, we show how the removal failed to undo the algorithmic imprint on the sociotechnical infrastructures that shape students', teachers', and parents' lives. These events provide a rare chance to analyze the state of the world both with and without algorithmic mediation. We situate our case study in Bangladesh to illustrate how algorithms made in the Global North disproportionately impact stakeholders in the Global South. Chronicling more than a year-long community engagement consisting of 47 inter-views, we present the first coherent timeline of "what" happened in Bangladesh, contextualizing "why" and "how" they happened through the lenses of the algorithmic imprint and situated algorithmic fairness. Analyzing these events, we highlight how the contours of the algorithmic imprints can be inferred at the infrastructural, social, and individual levels. We share conceptual and practical implications around how imprint-awareness can (a) broaden the boundaries of how we think about algorithmic impact, (b) inform how we design algorithms, and (c) guide us in AI governance.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 不變 · 判別器 · 離散化 · 情景 ·
2022 年 7 月 23 日

It is a well-known fact that there is no complete and discrete invariant on the collection of all multiparameter persistence modules. Nonetheless, many invariants have been proposed in the literature to study multiparameter persistence modules, though each invariant will lose some amount of information. One such invariant is the generalized rank invariant. This invariant is known to be complete on the class of interval decomposable persistence modules in general, under mild assumptions on the indexing poset $P$. There is often a trade-off, where the stronger an invariant is, the more expensive it is to compute in practice. The generalized rank invariant on its own is difficult to compute, whereas the standard rank invariant is readily computable through software implementations such as RIVET. We can interpolate between these two to induce new invariants via restricting the domain of the generalized rank invariant, and this family exhibits the aforementioned trade-off. This work studies the tension which exists between computational efficiency and retaining strength when restricting the domain of the generalized rank invariant. We provide a characterization result on where such restrictions are complete invariants in the setting where $P$ is finite, and furthermore show that such restricted generalized rank invariants are stable.

Harnessing parity-time (PT) symmetry with balanced gain and loss profiles has created a variety of opportunities in electronics from wireless energy transfer to telemetry sensing and topological defect engineering. However, existing implementations often employ ad-hoc approaches at low operating frequencies and are unable to accommodate large-scale integration. Here, we report a fully integrated realization of PT-symmetry in a standard complementary metal-oxide-semiconductor technology. Our work demonstrates salient PT-symmetry features such as phase transition as well as the ability to manipulate broadband microwave generation and propagation beyond the limitations encountered by exiting schemes. The system shows 2.1 times bandwidth and 30 percentage noise reduction compared to conventional microwave generation in oscillatory mode and displays large non-reciprocal microwave transport from 2.75 to 3.10 gigahertz in non-oscillatory mode due to enhanced nonlinearities. This approach could enrich integrated circuit (IC) design methodology beyond well-established performance limits and enable the use of scalable IC technology to study topological effects in high-dimensional non-Hermitian systems.

The extensive adoption of business analytics (BA) has brought financial gains and increased efficiencies. However, these advances have simultaneously drawn attention to rising legal and ethical challenges when BA inform decisions with fairness implications. As a response to these concerns, the emerging study of algorithmic fairness deals with algorithmic outputs that may result in disparate outcomes or other forms of injustices for subgroups of the population, especially those who have been historically marginalized. Fairness is relevant on the basis of legal compliance, social responsibility, and utility; if not adequately and systematically addressed, unfair BA systems may lead to societal harms and may also threaten an organization's own survival, its competitiveness, and overall performance. This paper offers a forward-looking, BA-focused review of algorithmic fairness. We first review the state-of-the-art research on sources and measures of bias, as well as bias mitigation algorithms. We then provide a detailed discussion of the utility-fairness relationship, emphasizing that the frequent assumption of a trade-off between these two constructs is often mistaken or short-sighted. Finally, we chart a path forward by identifying opportunities for business scholars to address impactful, open challenges that are key to the effective and responsible deployment of BA.

The Heuristic Rating Estimation Method enables decision-makers to decide based on existing ranking data and expert comparisons. In this approach, the ranking values of selected alternatives are known in advance, while these values have to be calculated for the remaining ones. Their calculation can be performed using either an additive or a multiplicative method. Both methods assumed that the pairwise comparison sets involved in the computation were complete. In this paper, we show how these algorithms can be extended so that the experts do not need to compare all alternatives pairwise. Thanks to the shortening of the work of experts, the presented, improved methods will reduce the costs of the decision-making procedure and facilitate and shorten the stage of collecting decision-making data.

Evaluation of researchers' output is vital for hiring committees and funding bodies, and it is usually measured via their scientific productivity, citations, or a combined metric such as h-index. Assessing young researchers is more critical because it takes a while to get citations and increment of h-index. Hence, predicting the h-index can help to discover the researchers' scientific impact. In addition, identifying the influential factors to predict the scientific impact is helpful for researchers seeking solutions to improve it. This study investigates the effect of author, paper and venue-specific features on the future h-index. For this purpose, we used machine learning methods to predict the h-index and feature analysis techniques to advance the understanding of feature impact. Utilizing the bibliometric data in Scopus, we defined and extracted two main groups of features. The first relates to prior scientific impact, and we name it 'prior impact-based features' and includes the number of publications, received citations, and h-index. The second group is 'non-impact-based features' and contains the features related to author, co-authorship, paper, and venue characteristics. We explored their importance in predicting h-index for researchers in three different career phases. Also, we examine the temporal dimension of predicting performance for different feature categories to find out which features are more reliable for long- and short-term prediction. We referred to the gender of the authors to examine the role of this author's characteristics in the prediction task. Our findings showed that gender has a very slight effect in predicting the h-index. We found that non-impact-based features are more robust predictors for younger scholars than seniors in the short term. Also, prior impact-based features lose their power to predict more than other features in the long-term.

The capacity sharing problem in Radio Access Network (RAN) slicing deals with the distribution of the capacity available in each RAN node among various RAN slices to satisfy their traffic demands and efficiently use the radio resources. While several capacity sharing algorithmic solutions have been proposed in the literature, their practical implementation still remains as a gap. In this paper, the implementation of a Reinforcement Learning-based capacity sharing algorithm over the O-RAN architecture is discussed, providing insights into the operation of the involved interfaces and the containerization of the solution. Moreover, the description of the testbed implemented to validate the solution is included and some performance and validation results are presented.

Integrating terrestrial and non-terrestrial networks has the potential of connecting the unconnected and enhancing the user experience for the already-connected, with technological and societal implications of the greatest long-term significance. A convergence of ground, air, and space wireless communications also represents a formidable endeavor for the mobile and satellite communications industries alike, as it entails defining and intelligently orchestrating a new 3D wireless network architecture. In this article, we present the key opportunities and challenges arising from this (r)evolution by presenting some of its disruptive use-cases and key building blocks, reviewing the relevant standardization activities, and pointing to open research problems. By considering two multi-operator paradigms, we also showcase how terrestrial networks could be efficiently re-engineered to cater for aerial services, or opportunistically complemented by non-terrestrial infrastructure to augment their current capabilities.

The world population is anticipated to increase by close to 2 billion by 2050 causing a rapid escalation of food demand. A recent projection shows that the world is lagging behind accomplishing the "Zero Hunger" goal, in spite of some advancements. Socio-economic and well being fallout will affect the food security. Vulnerable groups of people will suffer malnutrition. To cater to the needs of the increasing population, the agricultural industry needs to be modernized, become smart, and automated. Traditional agriculture can be remade to efficient, sustainable, eco-friendly smart agriculture by adopting existing technologies. In this survey paper the authors present the applications, technological trends, available datasets, networking options, and challenges in smart agriculture. How Agro Cyber Physical Systems are built upon the Internet-of-Agro-Things is discussed through various application fields. Agriculture 4.0 is also discussed as a whole. We focus on the technologies, such as Artificial Intelligence (AI) and Machine Learning (ML) which support the automation, along with the Distributed Ledger Technology (DLT) which provides data integrity and security. After an in-depth study of different architectures, we also present a smart agriculture framework which relies on the location of data processing. We have divided open research problems of smart agriculture as future research work in two groups - from a technological perspective and from a networking perspective. AI, ML, the blockchain as a DLT, and Physical Unclonable Functions (PUF) based hardware security fall under the technology group, whereas any network related attacks, fake data injection and similar threats fall under the network research problem group.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

北京阿比特科技有限公司