We study the problem of high-dimensional sparse mean estimation in the presence of an $\epsilon$-fraction of adversarial outliers. Prior work obtained sample and computationally efficient algorithms for this task for identity-covariance subgaussian distributions. In this work, we develop the first efficient algorithms for robust sparse mean estimation without a priori knowledge of the covariance. For distributions on $\mathbb R^d$ with "certifiably bounded" $t$-th moments and sufficiently light tails, our algorithm achieves error of $O(\epsilon^{1-1/t})$ with sample complexity $m = (k\log(d))^{O(t)}/\epsilon^{2-2/t}$. For the special case of the Gaussian distribution, our algorithm achieves near-optimal error of $\tilde O(\epsilon)$ with sample complexity $m = O(k^4 \mathrm{polylog}(d))/\epsilon^2$. Our algorithms follow the Sum-of-Squares based, proofs to algorithms approach. We complement our upper bounds with Statistical Query and low-degree polynomial testing lower bounds, providing evidence that the sample-time-error tradeoffs achieved by our algorithms are qualitatively the best possible.
Given a partial differential equation (PDE), goal-oriented error estimation allows us to understand how errors in a diagnostic quantity of interest (QoI), or goal, occur and accumulate in a numerical approximation, for example using the finite element method. By decomposing the error estimates into contributions from individual elements, it is possible to formulate adaptation methods, which modify the mesh with the objective of minimising the resulting QoI error. However, the standard error estimate formulation involves the true adjoint solution, which is unknown in practice. As such, it is common practice to approximate it with an 'enriched' approximation (e.g. in a higher order space or on a refined mesh). Doing so generally results in a significant increase in computational cost, which can be a bottleneck compromising the competitiveness of (goal-oriented) adaptive simulations. The central idea of this paper is to develop a "data-driven" goal-oriented mesh adaptation approach through the selective replacement of the expensive error estimation step with an appropriately configured and trained neural network. In doing so, the error estimator may be obtained without even constructing the enriched spaces. An element-by-element construction is employed here, whereby local values of various parameters related to the mesh geometry and underlying problem physics are taken as inputs, and the corresponding contribution to the error estimator is taken as output. We demonstrate that this approach is able to obtain the same accuracy with a reduced computational cost, for adaptive mesh test cases related to flow around tidal turbines, which interact via their downstream wakes, and where the overall power output of the farm is taken as the QoI. Moreover, we demonstrate that the element-by-element approach implies reasonably low training costs.
Causal effect estimation from observational data is a challenging problem, especially with high dimensional data and in the presence of unobserved variables. The available data-driven methods for tackling the problem either provide an estimation of the bounds of a causal effect (i.e. nonunique estimation) or have low efficiency. The major hurdle for achieving high efficiency while trying to obtain unique and unbiased causal effect estimation is how to find a proper adjustment set for confounding control in a fast way, given the huge covariate space and considering unobserved variables. In this paper, we approach the problem as a local search task for finding valid adjustment sets in data. We establish the theorems to support the local search for adjustment sets, and we show that unique and unbiased estimation can be achieved from observational data even when there exist unobserved variables. We then propose a data-driven algorithm that is fast and consistent under mild assumptions. We also make use of a frequent pattern mining method to further speed up the search of minimal adjustment sets for causal effect estimation. Experiments conducted on extensive synthetic and real-world datasets demonstrate that the proposed algorithm outperforms the state-of-the-art criteria/estimators in both accuracy and time-efficiency.
When learning disconnected distributions, Generative adversarial networks (GANs) are known to face model misspecification. Indeed, a continuous mapping from a unimodal latent distribution to a disconnected one is impossible, so GANs necessarily generate samples outside of the support of the target distribution. This raises a fundamental question: what is the latent space partition that minimizes the measure of these areas? Building on a recent result of geometric measure theory, we prove that an optimal GANs must structure its latent space as a 'simplicial cluster' - a Voronoi partition where cells are convex cones - when the dimension of the latent space is larger than the number of modes. In this configuration, each Voronoi cell maps to a distinct mode of the data. We derive both an upper and a lower bound on the optimal precision of GANs learning disconnected manifolds. Interestingly, these two bounds have the same order of decrease: $\sqrt{\log m}$, $m$ being the number of modes. Finally, we perform several experiments to exhibit the geometry of the latent space and experimentally show that GANs have a geometry with similar properties to the theoretical one.
Consider the sum $Y=B+B(H)$ of a Brownian motion $B$ and an independent fractional Brownian motion $B(H)$ with Hurst parameter $H\in(0,1)$. Surprisingly, even though $B(H)$ is not a semimartingale, Cheridito proved in [Bernoulli 7 (2001) 913--934] that $Y$ is a semimartingale if $H>3/4$. Moreover, $Y$ is locally equivalent to $B$ in this case, so $H$ cannot be consistently estimated from local observations of $Y$. This paper pivots on a second surprise in this model: if $B$ and $B(H)$ become correlated, then $Y$ will never be a semimartingale, and $H$ can be identified, regardless of its value. This and other results will follow from a detailed statistical analysis of a more general class of processes called mixed semimartingales, which are semiparametric extensions of $Y$ with stochastic volatility in both the martingale and the fractional component. In particular, we derive consistent estimators and feasible central limit theorems for all parameters and processes that can be identified from high-frequency observations. We further show that our estimators achieve optimal rates in a minimax sense. The estimation of mixed semimartingales with correlation is motivated by applications to high-frequency financial data contaminated by rough noise.
We consider shrinkage estimation of higher order Hilbert space valued Bochner integrals in a non-parametric setting. We propose estimators that shrink the $U$-statistic estimator of the Bochner integral towards a pre-specified target element in the Hilbert space. Depending on the degeneracy of the kernel of the $U$-statistic, we construct consistent shrinkage estimators with fast rates of convergence, and develop oracle inequalities comparing the risks of the the $U$-statistic estimator and its shrinkage version. Surprisingly, we show that the shrinkage estimator designed by assuming complete degeneracy of the kernel of the $U$-statistic is a consistent estimator even when the kernel is not complete degenerate. This work subsumes and improves upon Krikamol et al., 2016, JMLR and Zhou et al., 2019, JMVA, which only handle mean element and covariance operator estimation in a reproducing kernel Hilbert space. We also specialize our results to normal mean estimation and show that for $d\ge 3$, the proposed estimator strictly improves upon the sample mean in terms of the mean squared error.
Object reconstruction from 3D point clouds has achieved impressive progress in the computer vision and computer graphics research field. However, reconstruction from time-varying point clouds (a.k.a. 4D point clouds) is generally overlooked. In this paper, we propose a new network architecture, namely RFNet-4D, that jointly reconstruct objects and their motion flows from 4D point clouds. The key insight is that simultaneously performing both tasks via learning spatial and temporal features from a sequence of point clouds can leverage individual tasks, leading to improved overall performance. To prove this ability, we design a temporal vector field learning module using unsupervised learning approach for flow estimation, leveraged by supervised learning of spatial structures for object reconstruction. Extensive experiments and analyses on benchmark dataset validated the effectiveness and efficiency of our method. As shown in experimental results, our method achieves state-of-the-art performance on both flow estimation and object reconstruction while performing much faster than existing methods in both training and inference. Our code and data are available at //github.com/hkust-vgd/RFNet-4D
Strategy iteration is a technique frequently used for two-player games in order to determine the winner or compute payoffs, but to the best of our knowledge no general framework for strategy iteration has been considered. Inspired by previous work on simple stochastic games, we propose a general formalisation of strategy iteration for solving least fixpoint equations over a suitable class of complete lattices, based on MV-chains. We devise algorithms that can be used for non-expansive fixpoint functions represented as so-called min-, respectively, max-decompositions. Correspondingly, we develop two different techniques: strategy iteration from above, which has to solve the problem that iteration might reach a fixpoint that is not the least, and from below, which is algorithmically simpler, but requires a more involved correctness argument. We apply our method to solve energy games and compute behavioural metrics for probabilistic automata.
In Federated Learning (FL), a number of clients or devices collaborate to train a model without sharing their data. Models are optimized locally at each client and further communicated to a central hub for aggregation. While FL is an appealing decentralized training paradigm, heterogeneity among data from different clients can cause the local optimization to drift away from the global objective. In order to estimate and therefore remove this drift, variance reduction techniques have been incorporated into FL optimization recently. However, these approaches inaccurately estimate the clients' drift and ultimately fail to remove it properly. In this work, we propose an adaptive algorithm that accurately estimates drift across clients. In comparison to previous works, our approach necessitates less storage and communication bandwidth, as well as lower compute costs. Additionally, our proposed methodology induces stability by constraining the norm of estimates for client drift, making it more practical for large scale FL. Experimental findings demonstrate that the proposed algorithm converges significantly faster and achieves higher accuracy than the baselines across various FL benchmarks.
In model extraction attacks, adversaries can steal a machine learning model exposed via a public API by repeatedly querying it and adjusting their own model based on obtained predictions. To prevent model stealing, existing defenses focus on detecting malicious queries, truncating, or distorting outputs, thus necessarily introducing a tradeoff between robustness and model utility for legitimate users. Instead, we propose to impede model extraction by requiring users to complete a proof-of-work before they can read the model's predictions. This deters attackers by greatly increasing (even up to 100x) the computational effort needed to leverage query access for model extraction. Since we calibrate the effort required to complete the proof-of-work to each query, this only introduces a slight overhead for regular users (up to 2x). To achieve this, our calibration applies tools from differential privacy to measure the information revealed by a query. Our method requires no modification of the victim model and can be applied by machine learning practitioners to guard their publicly exposed models against being easily stolen.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.