One of the most impressive results of recent NLP history is the ability of pre-trained language models to solve new tasks in a zero-shot setting. To achieve this, NLP tasks are framed as natural language prompts, generating a response indicating the predicted output. Nonetheless, the performance in such settings often lags far behind its supervised counterpart, suggesting a large space for potential improvement. In this paper, we explore methods to utilize unlabeled data to improve zero-shot performance. Specifically, we take advantage of the fact that multiple prompts can be used to specify a single task, and propose to regularize prompt consistency, encouraging consistent predictions over this diverse set of prompts. Our method makes it possible to fine-tune the model either with extra unlabeled training data, or directly on test input at inference time in an unsupervised manner. In experiments, our approach outperforms the state-of-the-art zero-shot learner, T0 (Sanh et al., 2022), on 9 out of 11 datasets across 4 NLP tasks by up to 10.6 absolute points in terms of accuracy. The gains are often attained with a small number of unlabeled examples.
There is a rising interest in further exploring the zero-shot learning potential of large pre-trained language models (PLMs). A new paradigm called data-generation-based zero-shot learning has achieved impressive success. In this paradigm, the synthesized data from the PLM acts as the carrier of knowledge, which is used to train a task-specific model with orders of magnitude fewer parameters than the PLM, achieving both higher performance and efficiency than prompt-based zero-shot learning methods on PLMs. The main hurdle of this approach is that the synthesized data from PLM usually contains a significant portion of low-quality samples. Fitting on such data will greatly hamper the performance of the task-specific model, making it unreliable for deployment. Previous methods remedy this issue mainly by filtering synthetic data using heuristic metrics(e.g., output confidence), or refining the data with the help of a human expert, which comes with excessive manual tuning or expensive costs. In this paper, we propose a novel noise-robust re-weighting framework SunGen to automatically construct high-quality data for zero-shot classification problems. Our framework features the ability to learn the sample weights indicating data quality without requiring any human annotation. We theoretically and empirically verify the ability of our method to help construct good-quality synthetic datasets. Notably, SunGen-LSTM yields a 9.8% relative improvement than the baseline on average accuracy across eight different established text classification tasks.
Recently, much exertion has been paid to design graph self-supervised methods to obtain generalized pre-trained models, and adapt pre-trained models onto downstream tasks through fine-tuning. However, there exists an inherent gap between pretext and downstream graph tasks, which insufficiently exerts the ability of pre-trained models and even leads to negative transfer. Meanwhile, prompt tuning has seen emerging success in natural language processing by aligning pre-training and fine-tuning with consistent training objectives. In this paper, we identify the challenges for graph prompt tuning: The first is the lack of a strong and universal pre-training task across sundry pre-training methods in graph domain. The second challenge lies in the difficulty of designing a consistent training objective for both pre-training and downstream tasks. To overcome above obstacles, we propose a novel framework named SGL-PT which follows the learning strategy ``Pre-train, Prompt, and Predict''. Specifically, we raise a strong and universal pre-training task coined as SGL that acquires the complementary merits of generative and contrastive self-supervised graph learning. And aiming for graph classification task, we unify pre-training and fine-tuning by designing a novel verbalizer-free prompting function, which reformulates the downstream task in a similar format as pretext task. Empirical results show that our method surpasses other baselines under unsupervised setting, and our prompt tuning method can greatly facilitate models on biological datasets over fine-tuning methods.
Text-to-image personalization aims to teach a pre-trained diffusion model to reason about novel, user provided concepts, embedding them into new scenes guided by natural language prompts. However, current personalization approaches struggle with lengthy training times, high storage requirements or loss of identity. To overcome these limitations, we propose an encoder-based domain-tuning approach. Our key insight is that by underfitting on a large set of concepts from a given domain, we can improve generalization and create a model that is more amenable to quickly adding novel concepts from the same domain. Specifically, we employ two components: First, an encoder that takes as an input a single image of a target concept from a given domain, e.g. a specific face, and learns to map it into a word-embedding representing the concept. Second, a set of regularized weight-offsets for the text-to-image model that learn how to effectively ingest additional concepts. Together, these components are used to guide the learning of unseen concepts, allowing us to personalize a model using only a single image and as few as 5 training steps - accelerating personalization from dozens of minutes to seconds, while preserving quality.
The increasing scale of general-purpose Pre-trained Language Models (PLMs) necessitates the study of more efficient adaptation across different downstream tasks. In this paper, we establish a Black-box Discrete Prompt Learning (BDPL) to resonate with pragmatic interactions between the cloud infrastructure and edge devices. Particularly, instead of fine-tuning the model in the cloud, we adapt PLMs by prompt learning, which efficiently optimizes only a few parameters of the discrete prompts. Moreover, we consider the scenario that we do not have access to the parameters and gradients of the pre-trained models, except for its outputs given inputs. This black-box setting secures the cloud infrastructure from potential attack and misuse to cause a single-point failure, which is preferable to the white-box counterpart by current infrastructures. Under this black-box constraint, we apply a variance-reduced policy gradient algorithm to estimate the gradients of parameters in the categorical distribution of each discrete prompt. In light of our method, the user devices can efficiently tune their tasks by querying the PLMs bounded by a range of API calls. Our experiments on RoBERTa and GPT-3 demonstrate that the proposed algorithm achieves significant improvement on eight benchmarks in a cloud-device collaboration manner. Finally, we conduct in-depth case studies to comprehensively analyze our method in terms of various data sizes, prompt lengths, training budgets, optimization objectives, prompt transferability, and explanations of the learned prompts. Our code will be available at //github.com/shizhediao/Black-Box-Prompt-Learning.
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub "prompt-based learning". Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x' that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website //pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on several popular benchmarks including CUB-200-2011, MIT Indoor-67, MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and MixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at //github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
Deep learning-based semi-supervised learning (SSL) algorithms have led to promising results in medical images segmentation and can alleviate doctors' expensive annotations by leveraging unlabeled data. However, most of the existing SSL algorithms in literature tend to regularize the model training by perturbing networks and/or data. Observing that multi/dual-task learning attends to various levels of information which have inherent prediction perturbation, we ask the question in this work: can we explicitly build task-level regularization rather than implicitly constructing networks- and/or data-level perturbation-and-transformation for SSL? To answer this question, we propose a novel dual-task-consistency semi-supervised framework for the first time. Concretely, we use a dual-task deep network that jointly predicts a pixel-wise segmentation map and a geometry-aware level set representation of the target. The level set representation is converted to an approximated segmentation map through a differentiable task transform layer. Simultaneously, we introduce a dual-task consistency regularization between the level set-derived segmentation maps and directly predicted segmentation maps for both labeled and unlabeled data. Extensive experiments on two public datasets show that our method can largely improve the performance by incorporating the unlabeled data. Meanwhile, our framework outperforms the state-of-the-art semi-supervised medical image segmentation methods. Code is available at: //github.com/Luoxd1996/DTC
Language model pre-training, such as BERT, has significantly improved the performances of many natural language processing tasks. However, pre-trained language models are usually computationally expensive and memory intensive, so it is difficult to effectively execute them on some resource-restricted devices. To accelerate inference and reduce model size while maintaining accuracy, we firstly propose a novel transformer distillation method that is a specially designed knowledge distillation (KD) method for transformer-based models. By leveraging this new KD method, the plenty of knowledge encoded in a large teacher BERT can be well transferred to a small student TinyBERT. Moreover, we introduce a new two-stage learning framework for TinyBERT, which performs transformer distillation at both the pre-training and task-specific learning stages. This framework ensures that TinyBERT can capture both the general-domain and task-specific knowledge of the teacher BERT. TinyBERT is empirically effective and achieves comparable results with BERT in GLUE datasets, while being 7.5x smaller and 9.4x faster on inference. TinyBERT is also significantly better than state-of-the-art baselines, even with only about 28% parameters and 31% inference time of baselines.
Most previous event extraction studies have relied heavily on features derived from annotated event mentions, thus cannot be applied to new event types without annotation effort. In this work, we take a fresh look at event extraction and model it as a grounding problem. We design a transferable neural architecture, mapping event mentions and types jointly into a shared semantic space using structural and compositional neural networks, where the type of each event mention can be determined by the closest of all candidate types . By leveraging (1)~available manual annotations for a small set of existing event types and (2)~existing event ontologies, our framework applies to new event types without requiring additional annotation. Experiments on both existing event types (e.g., ACE, ERE) and new event types (e.g., FrameNet) demonstrate the effectiveness of our approach. \textit{Without any manual annotations} for 23 new event types, our zero-shot framework achieved performance comparable to a state-of-the-art supervised model which is trained from the annotations of 500 event mentions.