亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Within the concept of physical human-robot interaction (pHRI), the most important criterion is the safety of the human operator interacting with a high degree of freedom (DoF) robot. Therefore, a robust control scheme is in high demand to establish safe pHRI and stabilize nonlinear, high DoF systems. In this paper, an adaptive decentralized control strategy is designed to accomplish the abovementioned objectives. To do so, a human upper limb model and an exoskeleton model are decentralized and augmented at the subsystem level to enable a decentralized control action design. Moreover, human exogenous force (HEF) that can resist exoskeleton motion is estimated using radial basis function neural networks (RBFNNs). Estimating both human upper limb and robot rigid body parameters, along with HEF estimation, makes the controller adaptable to different operators, ensuring their physical safety. The barrier Lyapunov function (BLF) is employed to guarantee that the robot can operate in a safe workspace while ensuring stability by adjusting the control law. Unknown actuator uncertainty and constraints are also considered in this study to ensure a smooth and safe pHRI. Then, the asymptotic stability of the whole system is established by means of the virtual stability concept and virtual power flows (VPFs) under the proposed robust controller. The experimental results are presented and compared to proportional-derivative (PD) and proportional-integral-derivative (PID) controllers. To show the robustness of the designed controller and its good performance, experiments are performed at different velocities, with different human users, and in the presence of unknown disturbances. The proposed controller showed perfect performance in controlling the robot, whereas PD and PID controllers could not even ensure stable motion in the wrist joints of the robot.

相關內容

Driver distraction causes a significant number of traffic accidents every year, resulting in economic losses and casualties. Currently, the level of automation in commercial vehicles is far from completely unmanned, and drivers still play an important role in operating and controlling the vehicle. Therefore, driver distraction behavior detection is crucial for road safety. At present, driver distraction detection primarily relies on traditional Convolutional Neural Networks (CNN) and supervised learning methods. However, there are still challenges such as the high cost of labeled datasets, limited ability to capture high-level semantic information, and weak generalization performance. In order to solve these problems, this paper proposes a new self-supervised learning method based on masked image modeling for driver distraction behavior detection. Firstly, a self-supervised learning framework for masked image modeling (MIM) is introduced to solve the serious human and material consumption issues caused by dataset labeling. Secondly, the Swin Transformer is employed as an encoder. Performance is enhanced by reconfiguring the Swin Transformer block and adjusting the distribution of the number of window multi-head self-attention (W-MSA) and shifted window multi-head self-attention (SW-MSA) detection heads across all stages, which leads to model more lightening. Finally, various data augmentation strategies are used along with the best random masking strategy to strengthen the model's recognition and generalization ability. Test results on a large-scale driver distraction behavior dataset show that the self-supervised learning method proposed in this paper achieves an accuracy of 99.60%, approximating the excellent performance of advanced supervised learning methods.

Suitable representations of dynamical systems can simplify their analysis and control. On this line of thought, this paper considers the input decoupling problem for input-affine Lagrangian dynamics, namely the problem of finding a transformation of the generalized coordinates that decouples the input channels. We identify a class of systems for which this problem is solvable. Such systems are called collocated because the decoupling variables correspond to the coordinates on which the actuators directly perform work. Under mild conditions on the input matrix, a simple test is presented to verify whether a system is collocated or not. By exploiting power invariance, it is proven that a change of coordinates decouples the input channels if and only if the dynamics is collocated. We illustrate the theoretical results by considering several Lagrangian systems, focusing on underactuated mechanical systems, for which novel controllers that exploit input decoupling are designed.

Handing objects to humans is an essential capability for collaborative robots. Previous research works on human-robot handovers focus on facilitating the performance of the human partner and possibly minimising the physical effort needed to grasp the object. However, altruistic robot behaviours may result in protracted and awkward robot motions, contributing to unpleasant sensations by the human partner and affecting perceived safety and social acceptance. This paper investigates whether transferring the cognitive science principle that "humans act coefficiently as a group" (i.e. simultaneously maximising the benefits of all agents involved) to human-robot cooperative tasks promotes a more seamless and natural interaction. Human-robot coefficiency is first modelled by identifying implicit indicators of human comfort and discomfort as well as calculating the robot energy consumption in performing the desired trajectory. We then present a reinforcement learning approach that uses the human-robot coefficiency score as reward to adapt and learn online the combination of robot interaction parameters that maximises such coefficiency. Results proved that by acting coefficiently the robot could meet the individual preferences of most subjects involved in the experiments, improve the human perceived comfort, and foster trust in the robotic partner.

Path planning is critical for autonomous vehicles (AVs) to determine the optimal route while considering constraints and objectives. The potential field (PF) approach has become prevalent in path planning due to its simple structure and computational efficiency. However, current PF methods used in AVs focus solely on the path generation of the ego vehicle while assuming that the surrounding obstacle vehicles drive at a preset behavior without the PF-based path planner, which ignores the fact that the ego vehicle's PF could also impact the path generation of the obstacle vehicles. To tackle this problem, we propose a PF-based path planning approach where local paths are shared among ego and obstacle vehicles via vehicle-to-vehicle (V2V) communication. Then by integrating this shared local path into an objective function, a new optimization function called interactive speed optimization (ISO) is designed to allow driving safety and comfort for both ego and obstacle vehicles. The proposed method is evaluated using MATLAB/Simulink in the urgent merging scenarios by comparing it with conventional methods. The simulation results indicate that the proposed method can mitigate the impact of other AVs' PFs by slowing down in advance, effectively reducing the oscillations for both ego and obstacle AVs.

Making safe and successful lane changes (LCs) is one of the many vitally important functions of autonomous vehicles (AVs) that are needed to ensure safe driving on expressways. Recently, the simplicity and real-time performance of the potential field (PF) method have been leveraged to design decision and planning modules for AVs. However, the LC trajectory planned by the PF method is usually lengthy and takes the ego vehicle laterally parallel and close to the obstacle vehicle, which creates a dangerous situation if the obstacle vehicle suddenly steers. To mitigate this risk, we propose a time-to-collision-aware LC (TTCA-LC) strategy based on the PF and cubic polynomial in which the TTC constraint is imposed in the optimized curve fitting. The proposed approach is evaluated using MATLAB/Simulink under high-speed conditions in a comparative driving scenario. The simulation results indicate that the TTCA-LC method performs better than the conventional PF-based LC (CPF-LC) method in generating shorter, safer, and smoother trajectories. The length of the LC trajectory is shortened by over 27.1\%, and the curvature is reduced by approximately 56.1\% compared with the CPF-LC method.

Recently, safe reinforcement learning (RL) with the actor-critic structure for continuous control tasks has received increasing attention. It is still challenging to learn a near-optimal control policy with safety and convergence guarantees. Also, few works have addressed the safe RL algorithm design under time-varying safety constraints. This paper proposes a safe RL algorithm for optimal control of nonlinear systems with time-varying state and control constraints. In the proposed approach, we construct a novel barrier force-based control policy structure to guarantee control safety. A multi-step policy evaluation mechanism is proposed to predict the policy's safety risk under time-varying safety constraints and guide the policy to update safely. Theoretical results on stability and robustness are proven. Also, the convergence of the actor-critic implementation is analyzed. The performance of the proposed algorithm outperforms several state-of-the-art RL algorithms in the simulated Safety Gym environment. Furthermore, the approach is applied to the integrated path following and collision avoidance problem for two real-world intelligent vehicles. A differential-drive vehicle and an Ackermann-drive one are used to verify offline deployment and online learning performance, respectively. Our approach shows an impressive sim-to-real transfer capability and a satisfactory online control performance in the experiment.

This thesis studies the domain of collective robotics, and more particularly the optimization problems of multirobot systems in the context of exploration, path planning and coordination. It includes two contributions. The first one is the use of the Butterfly Optimization Algorithm (BOA) to solve the Unknown Area Exploration problem with energy constraints in dynamic environments. This algorithm was never used for solving robotics problems before, as far as we know. We proposed a new version of this algorithm called xBOA based on the crossover operator to improve the diversity of the candidate solutions and speed up the convergence of the algorithm. The second contribution is the development of a new simulation framework for benchmarking dynamic incremental problems in robotics such as exploration tasks. The framework is made in such a manner to be generic to quickly compare different metaheuristics with minimum modifications, and to adapt easily to single and multi-robot scenarios. Also, it provides researchers with tools to automate their experiments and generate visuals, which will allow them to focus on more important tasks such as modeling new algorithms. We conducted a series of experiments that showed promising results and allowed us to validate our approach and model.

In recent years, there has been a surge of interest in the development of probabilistic approaches to problems that might appear to be purely deterministic. One example of this is the solving of partial differential equations. Since numerical solvers require some approximation of the infinite-dimensional solution space, there is an inherent uncertainty to the solution that is obtained. In this work, the uncertainty associated with the finite element discretization error is modeled following the Bayesian paradigm. First, a continuous formulation is derived, where a Gaussian process prior over the solution space is updated based on observations from a finite element discretization. Due to intractable integrals, a second, finer, discretization is introduced that is assumed sufficiently dense to represent the true solution field. The prior distribution assumed over the fine discretization is then updated based on observations from the coarse discretization. This yields a posterior distribution with a mean close to the deterministic fine-scale solution that is endowed with an uncertainty measure. The prior distribution over the solution space is defined implicitly by assigning a white noise distribution to the right-hand side. This allows for a sparse representation of the prior distribution, and guarantees that the prior samples have the appropriate level of smoothness for the problem at hand. Special attention is paid to inhomogeneous Dirichlet and Neumann boundary conditions, and how these can be used to enhance this white noise prior distribution. For various problems, we demonstrate how regions of large discretization error are captured in the structure of the posterior standard deviation. The effects of the hyperparameters and observation noise on the quality of the posterior mean and standard deviation are investigated in detail.

Mean-field games have been used as a theoretical tool to obtain an approximate Nash equilibrium for symmetric and anonymous $N$-player games. However, limiting applicability, existing theoretical results assume variations of a "population generative model", which allows arbitrary modifications of the population distribution by the learning algorithm. Moreover, learning algorithms typically work on abstract simulators with population instead of the $N$-player game. Instead, we show that $N$ agents running policy mirror ascent converge to the Nash equilibrium of the regularized game within $\widetilde{\mathcal{O}}(\varepsilon^{-2})$ samples from a single sample trajectory without a population generative model, up to a standard $\mathcal{O}(\frac{1}{\sqrt{N}})$ error due to the mean field. Taking a divergent approach from the literature, instead of working with the best-response map we first show that a policy mirror ascent map can be used to construct a contractive operator having the Nash equilibrium as its fixed point. We analyze single-path TD learning for $N$-agent games, proving sample complexity guarantees by only using a sample path from the $N$-agent simulator without a population generative model. Furthermore, we demonstrate that our methodology allows for independent learning by $N$ agents with finite sample guarantees.

As connected autonomous vehicles (CAVs) become increasingly prevalent, there is a growing need for simulation platforms that can accurately evaluate CAV behavior in large-scale environments. In this paper, we propose Flowsim, a novel simulator specifically designed to meet these requirements. Flowsim offers a modular and extensible architecture that enables the analysis of CAV behaviors in large-scale scenarios. It provides researchers with a customizable platform for studying CAV interactions, evaluating communication and networking protocols, assessing cybersecurity vulnerabilities, optimizing traffic management strategies, and developing and evaluating policies for CAV deployment. Flowsim is implemented in pure Python in approximately 1,500 lines of code, making it highly readable, understandable, and easily modifiable. We verified the functionality and performance of Flowsim via a series of experiments based on realistic traffic scenarios. The results show the effectiveness of Flowsim in providing a flexible and powerful simulation environment for evaluating CAV behavior and data flow. Flowsim is a valuable tool for researchers, policymakers, and industry professionals who are involved in the development, evaluation, and deployment of CAVs. The code of Flowsim is publicly available on GitHub under the MIT license.

北京阿比特科技有限公司