亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Text-to-image generation models represent the next step of evolution in image synthesis, offering a natural way to achieve flexible yet fine-grained control over the result. One emerging area of research is the fast adaptation of large text-to-image models to smaller datasets or new visual concepts. However, many efficient methods of adaptation have a long training time, which limits their practical applications, slows down experiments, and spends excessive GPU resources. In this work, we study the training dynamics of popular text-to-image personalization methods (such as Textual Inversion or DreamBooth), aiming to speed them up. We observe that most concepts are learned at early stages and do not improve in quality later, but standard training convergence metrics fail to indicate that. Instead, we propose a simple drop-in early stopping criterion that only requires computing the regular training objective on a fixed set of inputs for all training iterations. Our experiments on Stable Diffusion for 48 different concepts and three personalization methods demonstrate the competitive performance of our approach, which makes adaptation up to 8 times faster with no significant drops in quality.

相關內容

Data contamination in evaluation is getting increasingly prevalent with the emerge of language models pre-trained on super large, automatically-crawled corpora. This problem leads to significant challenges in accurate assessment of model capabilities and generalisations. In this paper, we propose LatestEval, an automatic method leverages the most recent texts to create uncontaminated reading comprehension evaluations. LatestEval avoids data contamination by only using texts published within a recent time window, ensuring no overlap with the training corpora of pre-trained language models. We develop LatestEval automated pipeline to 1) gather latest texts; 2) identify key information, and 3) construct questions targeting the information while removing the existing answers from the context. This encourages models to infer the answers themselves based on the remaining context, rather than just copy-paste. Our experiments demonstrate that language models exhibit negligible memorisation behaviours on LatestEval as opposed to previous benchmarks, suggesting a significantly reduced risk of data contamination and leading to a more robust evaluation. Data and code are publicly available at: //github.com/liyucheng09/LatestEval.

For image restoration, methods leveraging priors from generative models have been proposed and demonstrated a promising capacity to robustly restore photorealistic and high-quality results. However, these methods are susceptible to semantic ambiguity, particularly with images that have obviously correct semantics such as facial images. In this paper, we propose a semantic-aware latent space exploration method for image restoration (SAIR). By explicitly modeling semantics information from a given reference image, SAIR is able to reliably restore severely degraded images not only to high-resolution and highly realistic looks but also to correct semantics. Quantitative and qualitative experiments collectively demonstrate the superior performance of the proposed SAIR. Our code is available at //github.com/Liamkuo/SAIR.

Multi-frame methods improve monocular depth estimation over single-frame approaches by aggregating spatial-temporal information via feature matching. However, the spatial-temporal feature leads to accuracy degradation in dynamic scenes. To enhance the performance, recent methods tend to propose complex architectures for feature matching and dynamic scenes. In this paper, we show that a simple learning framework, together with designed feature augmentation, leads to superior performance. (1) A novel dynamic objects detecting method with geometry explainability is proposed. The detected dynamic objects are excluded during training, which guarantees the static environment assumption and relieves the accuracy degradation problem of the multi-frame depth estimation. (2) Multi-scale feature fusion is proposed for feature matching in the multi-frame depth network, which improves feature matching, especially between frames with large camera motion. (3) The robust knowledge distillation with a robust teacher network and reliability guarantee is proposed, which improves the multi-frame depth estimation without computation complexity increase during the test. The experiments show that our proposed methods achieve great performance improvement on the multi-frame depth estimation.

Bayesian Neural Network (BNN) offers a more principled, robust, and interpretable framework for analyzing high-dimensional data. They address the typical challenges associated with conventional deep learning methods, such as data insatiability, ad-hoc nature, and susceptibility to overfitting. However, their implementation typically relies on Markov chain Monte Carlo (MCMC) methods that are characterized by their computational intensity and inefficiency in a high-dimensional space. To address this issue, we propose a novel Calibration-Emulation-Sampling (CES) strategy to significantly enhance the computational efficiency of BNN. In this CES framework, during the initial calibration stage, we collect a small set of samples from the parameter space. These samples serve as training data for the emulator. Here, we employ a Deep Neural Network (DNN) emulator to approximate the forward mapping, i.e., the process that input data go through various layers to generate predictions. The trained emulator is then used for sampling from the posterior distribution at substantially higher speed compared to the original BNN. Using simulated and real data, we demonstrate that our proposed method improves computational efficiency of BNN, while maintaining similar performance in terms of prediction accuracy and uncertainty quantification.

Transformers have revolutionized deep learning and generative modeling, enabling unprecedented advancements in natural language processing tasks. However, the size of transformer models is increasing continuously, driven by enhanced capabilities across various deep-learning tasks. This trend of ever-increasing model size has given rise to new challenges in terms of memory and computing requirements. Conventional computing platforms, including GPUs, suffer from suboptimal performance due to the memory demands imposed by models with millions/billions of parameters. The emerging chiplet-based platforms provide a new avenue for compute- and data-intensive machine learning (ML) applications enabled by a Network-on-Interposer (NoI). However, designing suitable hardware accelerators for executing Transformer inference workloads is challenging due to a wide variety of complex computing kernels in the Transformer architecture. In this paper, we leverage chiplet-based heterogeneous integration (HI) to design a high-performance and energy-efficient multi-chiplet platform to accelerate transformer workloads. We demonstrate that the proposed NoI architecture caters to the data access patterns inherent in a transformer model. The optimized placement of the chiplets and the associated NoI links and routers enable superior performance compared to the state-of-the-art hardware accelerators. The proposed NoI-based architecture demonstrates scalability across varying transformer models and improves latency and energy efficiency by up to 22.8x and 5.36x respectively.

We propose a framework for applying reinforcement learning to contextual two-stage stochastic optimization and apply this framework to the problem of energy market bidding of an off-shore wind farm. Reinforcement learning could potentially be used to learn close to optimal solutions for first stage variables of a two-stage stochastic program under different contexts. Under the proposed framework, these solutions would be learned without having to solve the full two-stage stochastic program. We present initial results of training using the DDPG algorithm and present intended future steps to improve performance.

Re-training a deep learning model each time a single data point receives a new label is impractical due to the inherent complexity of the training process. Consequently, existing active learning (AL) algorithms tend to adopt a batch-based approach where, during each AL iteration, a set of data points is collectively chosen for annotation. However, this strategy frequently leads to redundant sampling, ultimately eroding the efficacy of the labeling procedure. In this paper, we introduce a new AL algorithm that harnesses the power of a Gaussian process surrogate in conjunction with the neural network principal learner. Our proposed model adeptly updates the surrogate learner for every new data instance, enabling it to emulate and capitalize on the continuous learning dynamics of the neural network without necessitating a complete retraining of the principal model for each individual label. Experiments on four benchmark datasets demonstrate that this approach yields significant enhancements, either rivaling or aligning with the performance of state-of-the-art techniques.

This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司