In this paper, we introduce the concept of fractional integration for spatial autoregressive models. We show that the range of the dependence can be spatially extended or diminished by introducing a further fractional integration parameter to spatial autoregressive moving average models (SARMA). This new model is called the spatial autoregressive fractionally integrated moving average model, briefly sp-ARFIMA. We show the relation to time-series ARFIMA models and also to (higher-order) spatial autoregressive models. Moreover, an estimation procedure based on the maximum-likelihood principle is introduced and analysed in a series of simulation studies. Eventually, the use of the model is illustrated by an empirical example of atmospheric fine particles, so-called aerosol optical thickness, which is important in weather, climate and environmental science.
In this paper, we present an efficient solution for weed classification in agriculture. We focus on optimizing model performance at inference while respecting the constraints of the agricultural domain. We propose a Quantized Deep Neural Network model that classifies a dataset of 9 weed classes using 8-bit integer (int8) quantization, a departure from standard 32-bit floating point (fp32) models. Recognizing the hardware resource limitations in agriculture, our model balances model size, inference time, and accuracy, aligning with practical requirements. We evaluate the approach on ResNet-50 and InceptionV3 architectures, comparing their performance against their int8 quantized versions. Transfer learning and fine-tuning are applied using the DeepWeeds dataset. The results show staggering model size and inference time reductions while maintaining accuracy in real-world production scenarios like Desktop, Mobile and Raspberry Pi. Our work sheds light on a promising direction for efficient AI in agriculture, holding potential for broader applications. Code: //github.com/parikshit14/QNN-for-weed
We introduce JAX FDM, a differentiable solver to design mechanically efficient shapes for 3D structures conditioned on target architectural, fabrication and structural properties. Examples of such structures are domes, cable nets and towers. JAX FDM solves these inverse form-finding problems by combining the force density method, differentiable sparsity and gradient-based optimization. Our solver can be paired with other libraries in the JAX ecosystem to facilitate the integration of form-finding simulations with neural networks. We showcase the features of JAX FDM with two design examples. JAX FDM is available as an open-source library at //github.com/arpastrana/jax_fdm.
Linear regression models have been extensively considered in the literature. However, in some practical applications they may not be appropriate all over the range of the covariate. In this paper, a more flexible model is introduced by considering a regression model $Y=r(X)+\varepsilon$ where the regression function $r(\cdot)$ is assumed to be linear for large values in the domain of the predictor variable $X$. More precisely, we assume that $r(x)=\alpha_0+\beta_0 x$ for $x> u_0$, where the value $u_0$ is identified as the smallest value satisfying such a property. A penalized procedure is introduced to estimate the threshold $u_0$. The considered proposal focusses on a semiparametric approach since no parametric model is assumed for the regression function for values smaller than $u_0$. Consistency properties of both the threshold estimator and the estimators of $(\alpha_0,\beta_0)$ are derived, under mild assumptions. Through a numerical study, the small sample properties of the proposed procedure and the importance of introducing a penalization are investigated. The analysis of a real data set allows us to demonstrate the usefulness of the penalized estimators.
In this paper, we address the adversarial training of neural ODEs from a robust control perspective. This is an alternative to the classical training via empirical risk minimization, and it is widely used to enforce reliable outcomes for input perturbations. Neural ODEs allow the interpretation of deep neural networks as discretizations of control systems, unlocking powerful tools from control theory for the development and the understanding of machine learning. In this specific case, we formulate the adversarial training with perturbed data as a minimax optimal control problem, for which we derive first order optimality conditions in the form of Pontryagin's Maximum Principle. We provide a novel interpretation of robust training leading to an alternative weighted technique, which we test on a low-dimensional classification task.
Generative diffusion models have achieved spectacular performance in many areas of generative modeling. While the fundamental ideas behind these models come from non-equilibrium physics, in this paper we show that many aspects of these models can be understood using the tools of equilibrium statistical mechanics. Using this reformulation, we show that generative diffusion models undergo second-order phase transitions corresponding to symmetry breaking phenomena. We argue that this lead to a form of instability that lies at the heart of their generative capabilities and that can be described by a set of mean field critical exponents. We conclude by analyzing recent work connecting diffusion models and associative memory networks in view of the thermodynamic formulations.
Bayesian optimal design of experiments is a well-established approach to planning experiments. Briefly, a probability distribution, known as a statistical model, for the responses is assumed which is dependent on a vector of unknown parameters. A utility function is then specified which gives the gain in information for estimating the true value of the parameters using the Bayesian posterior distribution. A Bayesian optimal design is given by maximising the expectation of the utility with respect to the joint distribution given by the statistical model and prior distribution for the true parameter values. The approach takes account of the experimental aim via specification of the utility and of all assumed sources of uncertainty via the expected utility. However, it is predicated on the specification of the statistical model. Recently, a new type of statistical inference, known as Gibbs (or General Bayesian) inference, has been advanced. This is Bayesian-like, in that uncertainty on unknown quantities is represented by a posterior distribution, but does not necessarily rely on specification of a statistical model. Thus the resulting inference should be less sensitive to misspecification of the statistical model. The purpose of this paper is to propose Gibbs optimal design: a framework for optimal design of experiments for Gibbs inference. The concept behind the framework is introduced along with a computational approach to find Gibbs optimal designs in practice. The framework is demonstrated on exemplars including linear models, and experiments with count and time-to-event responses.
Importance sampling is a popular technique in Bayesian inference: by reweighting samples drawn from a proposal distribution we are able to obtain samples and moment estimates from a Bayesian posterior over some $n$ latent variables. Recent work, however, indicates that importance sampling scales poorly -- in order to accurately approximate the true posterior, the required number of importance samples grows is exponential in the number of latent variables [Chatterjee and Diaconis, 2018]. Massively parallel importance sampling works around this issue by drawing $K$ samples for each of the $n$ latent variables and reasoning about all $K^n$ combinations of latent samples. In principle, we can reason efficiently over $K^n$ combinations of samples by exploiting conditional independencies in the generative model. However, in practice this requires complex algorithms that traverse backwards through the graphical model, and we need separate backward traversals for each computation (posterior expectations, marginals and samples). Our contribution is to exploit the source term trick from physics to entirely avoid the need to hand-write backward traversals. Instead, we demonstrate how to simply and easily compute all the required quantities -- posterior expectations, marginals and samples -- by differentiating through a slightly modified marginal likelihood estimator.
In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.
In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).
BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum