亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Graph neural networks (GNNs) model representations from networked data and allow for decentralized inference through localized communications. Existing GNN architectures often assume ideal communications and ignore potential channel effects, such as fading and noise, leading to performance degradation in real-world implementation. Considering a GNN implemented over nodes connected through wireless links, this paper conducts a stability analysis to study the impact of channel impairments on the performance of GNNs, and proposes graph neural networks over the air (AirGNNs), a novel GNN architecture that incorporates the communication model. AirGNNs modify graph convolutional operations that shift graph signals over random communication graphs to take into account channel fading and noise when aggregating features from neighbors, thus, improving architecture robustness to channel impairments during testing. We develop a channel-inversion signal transmission strategy for AirGNNs when channel state information (CSI) is available, and propose a stochastic gradient descent based method to train AirGNNs when CSI is unknown. The convergence analysis shows that the training procedure approaches a stationary solution of an associated stochastic optimization problem and the variance analysis characterizes the statistical behavior of the trained model. Experiments on decentralized source localization and multi-robot flocking corroborate theoretical findings and show superior performance of AirGNNs over wireless communication channels.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網(wang)絡會(hui)議。 Publisher:IFIP。 SIT:

Extreme value analysis (EVA) uses data to estimate long-term extreme environmental conditions for variables such as significant wave height and period, for the design of marine structures. Together with models for the short-term evolution of the ocean environment and for wave-structure interaction, EVA provides a basis for full probabilistic design analysis. Alternatively, environmental contours provide an approximate approach to estimating structural integrity, without requiring structural knowledge. These contour methods also exploit statistical models, including EVA, but avoid the need for structural modelling by making what are believed to be conservative assumptions about the shape of the structural failure boundary in the environment space. These assumptions, however, may not always be appropriate, or may lead to unnecessary wasted resources from over design. We demonstrate a methodology for efficient fully probabilistic analysis of structural failure. From this, we estimate the joint conditional probability density of the environment (CDE), given the occurrence of an extreme structural response. We use CDE as a diagnostic to highlight the deficiencies of environmental contour methods for design; none of the IFORM environmental contours considered characterise CDE well for three example structures.

Neurosymbolic background knowledge and the expressivity required of its logic can break Machine Learning assumptions about data Independence and Identical Distribution. In this position paper we propose to analyze IID relaxation in a hierarchy of logics that fit different use case requirements. We discuss the benefits of exploiting known data dependencies and distribution constraints for Neurosymbolic use cases and argue that the expressivity required for this knowledge has implications for the design of underlying ML routines. This opens a new research agenda with general questions about Neurosymbolic background knowledge and the expressivity required of its logic.

We prove that training neural networks on 1-D data is equivalent to solving a convex Lasso problem with a fixed, explicitly defined dictionary matrix of features. The specific dictionary depends on the activation and depth. We consider 2 and 3-layer networks with piecewise linear activations, and rectangular and tree networks with sign activation and arbitrary depth. Interestingly in absolute value and symmetrized ReLU networks, a third layer creates features that represent reflections of training data about themselves. The Lasso representation sheds insight to globally optimal networks and the solution landscape.

The burgeoning field of on-device AI communication, where devices exchange information directly through embedded foundation models, such as language models (LMs), requires robust, efficient, and generalizable communication frameworks. However, integrating these frameworks with existing wireless systems and effectively managing noise and bit errors pose significant challenges. In this work, we introduce a practical ondevice AI communication framework, integrated with physical layer (PHY) communication functions, demonstrated through its performance on a link-level simulator. Our framework incorporates end-to-end training with channel noise to enhance resilience, incorporates vector quantized variational autoencoders (VQ-VAE) for efficient and robust communication, and utilizes pre-trained encoder-decoder transformers for improved generalization capabilities. Simulations, across various communication scenarios, reveal that our framework achieves a 50% reduction in transmission size while demonstrating substantial generalization ability and noise robustness under standardized 3GPP channel models.

Fully test-time adaptation aims to adapt the network model based on sequential analysis of input samples during the inference stage to address the cross-domain performance degradation problem of deep neural networks. This work is based on the following interesting finding: in transformer-based image classification, the class token at the first transformer encoder layer can be learned to capture the domain-specific characteristics of target samples during test-time adaptation. This learned token, when combined with input image patch embeddings, is able to gradually remove the domain-specific information from the feature representations of input samples during the transformer encoding process, thereby significantly improving the test-time adaptation performance of the source model across different domains. We refer to this class token as visual conditioning token (VCT). To successfully learn the VCT, we propose a bi-level learning approach to capture the long-term variations of domain-specific characteristics while accommodating local variations of instance-specific characteristics. Experimental results on the benchmark datasets demonstrate that our proposed bi-level visual conditioning token learning method is able to achieve significantly improved test-time adaptation performance by up to 1.9%.

The increasing frequency of attacks on Android applications coupled with the recent popularity of large language models (LLMs) necessitates a comprehensive understanding of the capabilities of the latter in identifying potential vulnerabilities, which is key to mitigate the overall risk. To this end, the work at hand compares the ability of nine state-of-the-art LLMs to detect Android code vulnerabilities listed in the latest Open Worldwide Application Security Project (OWASP) Mobile Top 10. Each LLM was evaluated against an open dataset of over 100 vulnerable code samples, including obfuscated ones, assessing each model's ability to identify key vulnerabilities. Our analysis reveals the strengths and weaknesses of each LLM, identifying important factors that contribute to their performance. Additionally, we offer insights into context augmentation with retrieval-augmented generation (RAG) for detecting Android code vulnerabilities, which in turn may propel secure application development. Finally, while the reported findings regarding code vulnerability analysis show promise, they also reveal significant discrepancies among the different LLMs.

Retrieval-Augmented Generation (RAG) merges retrieval methods with deep learning advancements to address the static limitations of large language models (LLMs) by enabling the dynamic integration of up-to-date external information. This methodology, focusing primarily on the text domain, provides a cost-effective solution to the generation of plausible but incorrect responses by LLMs, thereby enhancing the accuracy and reliability of their outputs through the use of real-world data. As RAG grows in complexity and incorporates multiple concepts that can influence its performance, this paper organizes the RAG paradigm into four categories: pre-retrieval, retrieval, post-retrieval, and generation, offering a detailed perspective from the retrieval viewpoint. It outlines RAG's evolution and discusses the field's progression through the analysis of significant studies. Additionally, the paper introduces evaluation methods for RAG, addressing the challenges faced and proposing future research directions. By offering an organized framework and categorization, the study aims to consolidate existing research on RAG, clarify its technological underpinnings, and highlight its potential to broaden the adaptability and applications of LLMs.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

Deep neural networks (DNNs) have been found to be vulnerable to adversarial examples resulting from adding small-magnitude perturbations to inputs. Such adversarial examples can mislead DNNs to produce adversary-selected results. Different attack strategies have been proposed to generate adversarial examples, but how to produce them with high perceptual quality and more efficiently requires more research efforts. In this paper, we propose AdvGAN to generate adversarial examples with generative adversarial networks (GANs), which can learn and approximate the distribution of original instances. For AdvGAN, once the generator is trained, it can generate adversarial perturbations efficiently for any instance, so as to potentially accelerate adversarial training as defenses. We apply AdvGAN in both semi-whitebox and black-box attack settings. In semi-whitebox attacks, there is no need to access the original target model after the generator is trained, in contrast to traditional white-box attacks. In black-box attacks, we dynamically train a distilled model for the black-box model and optimize the generator accordingly. Adversarial examples generated by AdvGAN on different target models have high attack success rate under state-of-the-art defenses compared to other attacks. Our attack has placed the first with 92.76% accuracy on a public MNIST black-box attack challenge.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司