This paper presents some elements of a new approach to construction of Br\`{e}gman relative entropies over nonreflexive Banach spaces, based on nonlinear mappings into reflexive Banach spaces. We apply it to derive a new family of Br\`{e}gman relative entropies over preduals of any W$^*$-algebras and of semifinite JBW-algebras, induced using the Mazur maps into corresponding noncommutative and nonassociative $L_p$ spaces. We prove generalised pythagorean theorem and norm-to-norm continuity of the corresponding entropic projections, as well as H\"{o}lder continuity of the nonassociative Mazur map on positive parts of unit balls. We also discuss the possibility of extension of these results to base normed spaces in spectral duality, pointing to an open problem of construction of $L_p$ spaces over the corresponding order unit spaces.
We give systematic ways of defining monotone quantum relative entropies and (multi-variate) quantum R\'enyi divergences starting from a set of monotone quantum relative entropies. Despite its central importance in information theory, only two additive and monotone quantum extensions of the classical relative entropy have been known so far, the Umegaki and the Belavkin-Staszewski relative entropies. Here we give a general procedure to construct monotone and additive quantum relative entropies from a given one with the same properties; in particular, when starting from the Umegaki relative entropy, this gives a new one-parameter family of monotone and additive quantum relative entropies interpolating between the Umegaki and the Belavkin-Staszewski ones on full-rank states. In a different direction, we use a generalization of a classical variational formula to define multi-variate quantum R\'enyi quantities corresponding to any finite set of quantum relative entropies $(D^{q_x})_{x\in X}$ and signed probability measure $P$, as $$ Q_P^{b,q}((\rho_x)_{x\in X}):=\sup_{\tau\ge 0}\left\{\Tr\tau-\sum_xP(x)D^{q_x}(\tau\|\rho_x)\right\}. $$ We show that monotone quantum relative entropies define monotone R\'enyi quantities whenever $P$ is a probability measure. With the proper normalization, the negative logarithm of the above quantity gives a quantum extension of the classical R\'enyi $\alpha$-divergence in the 2-variable case ($X=\{0,1\}$, $P(0)=\alpha$). We show that if both $D^{q_0}$ and $D^{q_1}$ are monotone and additive quantum relative entropies, and at least one of them is strictly larger than the Umegaki relative entropy then the resulting barycentric R\'enyi divergences are strictly between the log-Euclidean and the maximal R\'enyi divergences, and hence they are different from any previously studied quantum R\'enyi divergence.
We prove a variety of new and refined uniform continuity bounds for entropies of both classical random variables on an infinite state space and of quantum states of infinite-dimensional systems. We obtain the first tight continuity estimate on the Shannon entropy of random variables with a countably infinite alphabet. The proof relies on a new mean-constrained Fano-type inequality and the notion of maximal coupling of random variables. We then employ this classical result to derive the first tight energy-constrained continuity bound for the von Neumann entropy of states of infinite-dimensional quantum systems, when the Hamiltonian is the number operator, which is arguably the most relevant Hamiltonian in the study of infinite-dimensional quantum systems in the context of quantum information theory. The above scheme works only for Shannon- and von Neumann entropies. Hence, to deal with more general entropies, e.g. $\alpha$-R\'enyi and $\alpha$-Tsallis entropies, with $\alpha \in (0,1)$, for which continuity bounds are known only for finite-dimensional systems, we develop a novel approximation scheme which relies on recent results on operator H\"older continuous functions and the equivalence of all Schatten norms in special spectral subspaces of the Hamiltonian. This approach is, as we show, motivated by continuity bounds for $\alpha$-R\'enyi and $\alpha$-Tsallis entropies of random variables that follow from the H\"older continuity of the entropy functionals. Bounds for $\alpha>1$ are provided, too. Finally, we settle an open problem on related approximation questions posed in the recent works by Shirokov on the so-called Finite-dimensional Approximation (FA) property.
In this paper, we initiate the study of quantum algorithms in the Graph Drawing research area. We focus on two foundational drawing standards: 2-level drawings and book layouts. Concerning $2$-level drawings, we consider the problems of obtaining drawings with the minimum number of crossings, $k$-planar drawings, quasi-planar drawings, and the problem of removing the minimum number of edges to obtain a $2$-level planar graph. Concerning book layouts, we consider the problems of obtaining $1$-page book layouts with the minimum number of crossings, book embeddings with the minimum number of pages, and the problem of removing the minimum number of edges to obtain an outerplanar graph. We explore both the quantum circuit and the quantum annealing models of computation. In the quantum circuit model, we provide an algorithmic framework based on Grover's quantum search, which allows us to obtain, at least, a quadratic speedup on the best classical exact algorithms for all the considered problems. In the quantum annealing model, we perform experiments on the quantum processing unit provided by D-Wave, focusing on the classical $2$-level crossing minimization problem, demonstrating that quantum annealing is competitive with respect to classical algorithms.
We present a simple combinatorial framework for establishing approximate tensorization of variance and entropy in the setting of spin systems (a.k.a. undirected graphical models) based on balanced separators of the underlying graph. Such approximate tensorization results immediately imply as corollaries many important structural properties of the associated Gibbs distribution, in particular rapid mixing of the Glauber dynamics for sampling. We prove approximate tensorization by recursively establishing block factorization of variance and entropy with a small balanced separator of the graph. Our approach goes beyond the classical canonical path method for variance and the recent spectral independence approach, and allows us to obtain new rapid mixing results. As applications of our approach, we show that: 1. On graphs of treewidth $t$, the mixing time of the Glauber dynamics is $n^{O(t)}$, which recovers the recent results of Eppstein and Frishberg with improved exponents and simpler proofs; 2. On bounded-degree planar graphs, strong spatial mixing implies $\tilde{O}(n)$ mixing time of the Glauber dynamics, which gives a faster algorithm than the previous deterministic counting algorithm by Yin and Zhang.
With the fast development of reconfigurable intelligent surface (RIS), the network topology becomes more complex and varied, which makes the network design and analysis extremely challenging. Most of the current works adopt the binary system stochastic geometric, missing the coupling relationships between the direct and reflected paths caused by RISs. In this paper, we first define the typical triangle which consists of a base station (BS), a RIS and a user equipment (UE) as the basic ternary network unit in a RIS-assisted ultra-dense network (UDN). In addition, we extend the Campbell's theorem to the ternary system and present the ternary probability generating functional (PGFL) of the stochastic geometry. Based on the ternary stochastic geometry theory, we derive and analyze the coverage probability, area spectral efficiency (ASE), area energy efficiency (AEE) and energy coverage efficiency (ECE) of the RIS-assisted UDN system. Simulation results show that the RISs can improve the system performances, especially for the UE who has a high signal to interference plus noise ratio (SINR), as if the introduced RIS brings in Matthew effect. This phenomenon of RIS is appealing for guiding the design of complex networks.
Information diagram and the I-measure are useful mnemonics where random variables are treated as sets, and entropy and mutual information are treated as a signed measure. Although the I-measure has been successful in machine proofs of entropy inequalities, the theoretical underpinning of the ``random variables as sets'' analogy has been unclear until the recent works on mappings from random variables to sets by Ellerman (recovering order-$2$ Tsallis entropy over general probability space), and Down and Mediano (recovering Shannon entropy over discrete probability space). We generalize these constructions by designing a mapping which recovers the Shannon entropy (and the information density) over general probability space. Moreover, it has an intuitive interpretation based on the arrival time in a Poisson process, allowing us to understand the union, intersection and difference between (sets corresponding to) random variables and events. Cross entropy, KL divergence, and conditional entropy given an event, can be obtained as set intersections. We propose a generalization of the information diagram that also includes events, and demonstrate its usage by a diagrammatic proof of Fano's inequality.
The introduction of the European Union's (EU) set of comprehensive regulations relating to technology, the General Data Protection Regulation, grants EU citizens the right to explanations for automated decisions that have significant effects on their life. This poses a substantial challenge, as many of today's state-of-the-art algorithms are generally unexplainable black boxes. Simultaneously, we have seen an emergence of the fields of quantum computation and quantum AI. Due to the fickle nature of quantum information, the problem of explainability is amplified, as measuring a quantum system destroys the information. As a result, there is a need for post-hoc explanations for quantum AI algorithms. In the classical context, the cooperative game theory concept of the Shapley value has been adapted for post-hoc explanations. However, this approach does not translate to use in quantum computing trivially and can be exponentially difficult to implement if not handled with care. We propose a novel algorithm which reduces the problem of accurately estimating the Shapley values of a quantum algorithm into a far simpler problem of estimating the true average of a binomial distribution in polynomial time.
We introduce a new quantum algorithm for computing the Betti numbers of a simplicial complex. In contrast to previous quantum algorithms that work by estimating the eigenvalues of the combinatorial Laplacian, our algorithm is an instance of the generic Incremental Algorithm for computing Betti numbers that incrementally adds simplices to the simplicial complex and tests whether or not they create a cycle. In contrast to existing quantum algorithms for computing Betti numbers that work best when the complex has close to the maximal number of simplices, our algorithm works best for sparse complexes. To test whether a simplex creates a cycle, we introduce a quantum span-program algorithm. We show that the query complexity of our span program is parameterized by quantities called the effective resistance and effective capacitance of the boundary of the simplex. Unfortunately, we also prove upper and lower bounds on the effective resistance and capacitance, showing both quantities can be exponentially large with respect to the size of the complex, implying that our algorithm would have to run for exponential time to exactly compute Betti numbers. However, as a corollary to these bounds, we show that the spectral gap of the combinatorial Laplacian can be exponentially small. As the runtime of all previous quantum algorithms for computing Betti numbers are parameterized by the inverse of the spectral gap, our bounds show that all quantum algorithms for computing Betti numbers must run for exponentially long to exactly compute Betti numbers. Finally, we prove some novel formulas for effective resistance and effective capacitance to give intuition for these quantities.
Quantum computing is emerging as an unprecedented threat to the current state of widely used cryptographic systems. Cryptographic methods that have been considered secure for decades will likely be broken, with enormous impact on the security of sensitive data and communications in enterprises worldwide. A plan to migrate to quantum-resistant cryptographic systems is required. However, migrating an enterprise system to ensure a quantum-safe state is a complex process. Enterprises will require systematic guidance to perform this migration to remain resilient in a post-quantum era, as many organisations do not have staff with the expertise to manage this process unaided. This paper presents a comprehensive framework designed to aid enterprises in their migration. The framework articulates key steps and technical considerations in the cryptographic migration process. It makes use of existing organisational inventories and provides a roadmap for prioritising the replacement of cryptosystems in a post-quantum context. The framework enables the efficient identification of cryptographic objects, and can be integrated with other frameworks in enterprise settings to minimise operational disruption during migration. Practical case studies are included to demonstrate the utility and efficacy of the proposed framework using graph theoretic techniques to determine and evaluate cryptographic dependencies.
The quantum thermal average plays a central role in describing the thermodynamic properties of a quantum system. From the computational perspective, the quantum thermal average can be computed by the path integral molecular dynamics (PIMD), but the knowledge on the quantitative convergence of such approximations is lacking. We propose an alternative computational framework named the continuous loop path integral molecular dynamics (CL-PIMD), which replaces the ring polymer beads by a continuous loop in the spirit of the Feynman--Kac formula. By truncating the number of normal modes to a finite integer $N\in\mathbb N$, we quantify the discrepancy of the statistical average of the truncated CL-PIMD from the true quantum thermal average, and prove that the truncated CL-PIMD has uniform-in-$N$ geometric ergodicity. These results show that the CL-PIMD provides an accurate approximation to the quantum thermal average, and serves as a mathematical justification of the PIMD methodology.