亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Visual Simultaneous Localization and Mapping (vSLAM) is a widely used technique in robotics and computer vision that enables a robot to create a map of an unfamiliar environment using a camera sensor while simultaneously tracking its position over time. In this paper, we propose a novel RGBD vSLAM algorithm that can learn a memory-efficient, dense 3D geometry, and semantic segmentation of an indoor scene in an online manner. Our pipeline combines classical 3D vision-based tracking and loop closing with neural fields-based mapping. The mapping network learns the SDF of the scene as well as RGB, depth, and semantic maps of any novel view using only a set of keyframes. Additionally, we extend our pipeline to large scenes by using multiple local mapping networks. Extensive experiments on well-known benchmark datasets confirm that our approach provides robust tracking, mapping, and semantic labeling even with noisy, sparse, or no input depth. Overall, our proposed algorithm can greatly enhance scene perception and assist with a range of robot control problems.

相關內容

即時定(ding)位與地(di)圖(tu)構建(SLAM或Simultaneouslocalizationandmapping)是這樣一種(zhong)技術:使得機器(qi)人和自(zi)動駕(jia)駛(shi)汽車等設備能在(zai)未知(zhi)環境(jing)(沒有先驗(yan)知(zhi)識(shi)的(de)前提下)建立地(di)圖(tu),或者在(zai)已知(zhi)環境(jing)(已給出該地(di)圖(tu)的(de)先驗(yan)知(zhi)識(shi))中(zhong)能更新地(di)圖(tu),并保證(zheng)這些(xie)設備能在(zai)同(tong)時追(zhui)蹤它們的(de)當前位置。

Many common types of data can be represented as functions that map coordinates to signal values, such as pixel locations to RGB values in the case of an image. Based on this view, data can be compressed by overfitting a compact neural network to its functional representation and then encoding the network weights. However, most current solutions for this are inefficient, as quantization to low-bit precision substantially degrades the reconstruction quality. To address this issue, we propose overfitting variational Bayesian neural networks to the data and compressing an approximate posterior weight sample using relative entropy coding instead of quantizing and entropy coding it. This strategy enables direct optimization of the rate-distortion performance by minimizing the $\beta$-ELBO, and target different rate-distortion trade-offs for a given network architecture by adjusting $\beta$. Moreover, we introduce an iterative algorithm for learning prior weight distributions and employ a progressive refinement process for the variational posterior that significantly enhances performance. Experiments show that our method achieves strong performance on image and audio compression while retaining simplicity.

Simultaneous localisation and mapping (SLAM) play a vital role in autonomous robotics. Robotic platforms are often resource-constrained, and this limitation motivates resource-efficient SLAM implementations. While sparse visual SLAM algorithms offer good accuracy for modest hardware requirements, even these more scalable sparse approaches face limitations when applied to large-scale and long-term scenarios. A contributing factor is that the point clouds resulting from SLAM are inefficient to use and contain significant redundancy. This paper proposes the use of subset selection algorithms to reduce the map produced by sparse visual SLAM algorithms. Information-theoretic techniques have been applied to simpler related problems before, but they do not scale if applied to the full visual SLAM problem. This paper proposes a number of novel information\hyp{}theoretic utility functions for map point selection and optimises these functions using greedy algorithms. The reduced maps are evaluated using practical data alongside an existing visual SLAM implementation (ORB-SLAM 2). Approximate selection techniques proposed in this paper achieve trajectory accuracy comparable to an offline baseline while being suitable for online use. These techniques enable the practical reduction of maps for visual SLAM with competitive trajectory accuracy. Results also demonstrate that SLAM front-end performance can significantly impact the performance of map point selection. This shows the importance of testing map point selection with a front-end implementation. To exploit this, this paper proposes an approach that includes a model of the front-end in the utility function when additional information is available. This approach outperforms alternatives on applicable datasets and highlights future research directions.

We propose a method for in-hand 3D scanning of an unknown object with a monocular camera. Our method relies on a neural implicit surface representation that captures both the geometry and the appearance of the object, however, by contrast with most NeRF-based methods, we do not assume that the camera-object relative poses are known. Instead, we simultaneously optimize both the object shape and the pose trajectory. As direct optimization over all shape and pose parameters is prone to fail without coarse-level initialization, we propose an incremental approach that starts by splitting the sequence into carefully selected overlapping segments within which the optimization is likely to succeed. We reconstruct the object shape and track its poses independently within each segment, then merge all the segments before performing a global optimization. We show that our method is able to reconstruct the shape and color of both textured and challenging texture-less objects, outperforms classical methods that rely only on appearance features, and that its performance is close to recent methods that assume known camera poses.

We present a novel technique to estimate the 6D pose of objects from single images where the 3D geometry of the object is only given approximately and not as a precise 3D model. To achieve this, we employ a dense 2D-to-3D correspondence predictor that regresses 3D model coordinates for every pixel. In addition to the 3D coordinates, our model also estimates the pixel-wise coordinate error to discard correspondences that are likely wrong. This allows us to generate multiple 6D pose hypotheses of the object, which we then refine iteratively using a highly efficient region-based approach. We also introduce a novel pixel-wise posterior formulation by which we can estimate the probability for each hypothesis and select the most likely one. As we show in experiments, our approach is capable of dealing with extreme visual conditions including overexposure, high contrast, or low signal-to-noise ratio. This makes it a powerful technique for the particularly challenging task of estimating the pose of tumbling satellites for in-orbit robotic applications. Our method achieves state-of-the-art performance on the SPEED+ dataset and has won the SPEC2021 post-mortem competition.

We present a real-time visual-inertial dense mapping method capable of performing incremental 3D mesh reconstruction with high quality using only sequential monocular images and inertial measurement unit (IMU) readings. 6-DoF camera poses are estimated by a robust feature-based visual-inertial odometry (VIO), which also generates noisy sparse 3D map points as a by-product. We propose a sparse point aided multi-view stereo neural network (SPA-MVSNet) that can effectively leverage the informative but noisy sparse points from the VIO system. The sparse depth from VIO is firstly completed by a single-view depth completion network. This dense depth map, although naturally limited in accuracy, is then used as a prior to guide our MVS network in the cost volume generation and regularization for accurate dense depth prediction. Predicted depth maps of keyframe images by the MVS network are incrementally fused into a global map using TSDF-Fusion. We extensively evaluate both the proposed SPA-MVSNet and the entire visual-inertial dense mapping system on several public datasets as well as our own dataset, demonstrating the system's impressive generalization capabilities and its ability to deliver high-quality 3D mesh reconstruction online. Our proposed dense mapping system achieves a 39.7% improvement in F-score over existing systems when evaluated on the challenging scenarios of the EuRoC dataset.

A long-standing goal in scene understanding is to obtain interpretable and editable representations that can be directly constructed from a raw monocular RGB-D video, without requiring specialized hardware setup or priors. The problem is significantly more challenging in the presence of multiple moving and/or deforming objects. Traditional methods have approached the setup with a mix of simplifications, scene priors, pretrained templates, or known deformation models. The advent of neural representations, especially neural implicit representations and radiance fields, opens the possibility of end-to-end optimization to collectively capture geometry, appearance, and object motion. However, current approaches produce global scene encoding, assume multiview capture with limited or no motion in the scenes, and do not facilitate easy manipulation beyond novel view synthesis. In this work, we introduce a factored neural scene representation that can directly be learned from a monocular RGB-D video to produce object-level neural presentations with an explicit encoding of object movement (e.g., rigid trajectory) and/or deformations (e.g., nonrigid movement). We evaluate ours against a set of neural approaches on both synthetic and real data to demonstrate that the representation is efficient, interpretable, and editable (e.g., change object trajectory). Code and data are available at //geometry.cs.ucl.ac.uk/projects/2023/factorednerf .

3D lookup tables (3D LUTs) are a key component for image enhancement. Modern image signal processors (ISPs) have dedicated support for these as part of the camera rendering pipeline. Cameras typically provide multiple options for picture styles, where each style is usually obtained by applying a unique handcrafted 3D LUT. Current approaches for learning and applying 3D LUTs are notably fast, yet not so memory-efficient, as storing multiple 3D LUTs is required. For this reason and other implementation limitations, their use on mobile devices is less popular. In this work, we propose a Neural Implicit LUT (NILUT), an implicitly defined continuous 3D color transformation parameterized by a neural network. We show that NILUTs are capable of accurately emulating real 3D LUTs. Moreover, a NILUT can be extended to incorporate multiple styles into a single network with the ability to blend styles implicitly. Our novel approach is memory-efficient, controllable and can complement previous methods, including learned ISPs. Code, models and dataset available at: //github.com/mv-lab/nilut

Semantic reconstruction of indoor scenes refers to both scene understanding and object reconstruction. Existing works either address one part of this problem or focus on independent objects. In this paper, we bridge the gap between understanding and reconstruction, and propose an end-to-end solution to jointly reconstruct room layout, object bounding boxes and meshes from a single image. Instead of separately resolving scene understanding and object reconstruction, our method builds upon a holistic scene context and proposes a coarse-to-fine hierarchy with three components: 1. room layout with camera pose; 2. 3D object bounding boxes; 3. object meshes. We argue that understanding the context of each component can assist the task of parsing the others, which enables joint understanding and reconstruction. The experiments on the SUN RGB-D and Pix3D datasets demonstrate that our method consistently outperforms existing methods in indoor layout estimation, 3D object detection and mesh reconstruction.

Object tracking is the cornerstone of many visual analytics systems. While considerable progress has been made in this area in recent years, robust, efficient, and accurate tracking in real-world video remains a challenge. In this paper, we present a hybrid tracker that leverages motion information from the compressed video stream and a general-purpose semantic object detector acting on decoded frames to construct a fast and efficient tracking engine suitable for a number of visual analytics applications. The proposed approach is compared with several well-known recent trackers on the OTB tracking dataset. The results indicate advantages of the proposed method in terms of speed and/or accuracy. Another advantage of the proposed method over most existing trackers is its simplicity and deployment efficiency, which stems from the fact that it reuses and re-purposes the resources and information that may already exist in the system for other reasons.

We consider the problem of zero-shot recognition: learning a visual classifier for a category with zero training examples, just using the word embedding of the category and its relationship to other categories, which visual data are provided. The key to dealing with the unfamiliar or novel category is to transfer knowledge obtained from familiar classes to describe the unfamiliar class. In this paper, we build upon the recently introduced Graph Convolutional Network (GCN) and propose an approach that uses both semantic embeddings and the categorical relationships to predict the classifiers. Given a learned knowledge graph (KG), our approach takes as input semantic embeddings for each node (representing visual category). After a series of graph convolutions, we predict the visual classifier for each category. During training, the visual classifiers for a few categories are given to learn the GCN parameters. At test time, these filters are used to predict the visual classifiers of unseen categories. We show that our approach is robust to noise in the KG. More importantly, our approach provides significant improvement in performance compared to the current state-of-the-art results (from 2 ~ 3% on some metrics to whopping 20% on a few).

北京阿比特科技有限公司