In recent years, multiple types of locomotion methods for robots have been developed and enabled to adapt to multiple domains. In particular, aerial robots are useful for exploration in several situations, taking advantage of its three-dimensional mobility. Moreover, some aerial robots have achieved manipulation tasks in the air. However, energy consumption for flight is large and thus locomotion ability on the ground is also necessary for aerial robots to do tasks for long time. Therefore, in this work, we aim to develop deformable multirotor robot capable of rolling movement with its entire body and achieve motions on the ground and in the air. In this paper, we first describe the design methodology of a deformable multilinked air-ground hybrid multirotor. We also introduce its mechanical design and rotor configuration based on control stability. Then, thrust control method for locomotion in air and ground domains is described. Finally, we show the implemented prototype of the proposed robot and evaluate through experiments in air and terrestrial domains. To the best of our knowledge, this is the first time to achieve the rolling locomotion by multilink structured mutltrotor.
With the advanced ability to capture longitudinal sensed data and model human behavior, behavioral sensing technologies are progressing toward numerous wellbeing applications. However, the widespread use of top-down design approaches, often based on assumptions made by technology builders about user goals, needs, and preferences, can result in a lack of context sensitivity. Such oversights may lead to technologies that do not fully support the diverse needs of users and may even introduce potential harms. In this paper, we highlight two primary areas of potential harm in behavioral sensing technologies: identity-based and situation-based harms. By adopting a theory-driven approach, we propose a framework for identifying and mitigating these harms. To validate this framework, we applied it to two real-world studies of behavioral sensing as tools for systematic evaluation. Our analysis provides empirical evidence of potential harms and demonstrates the framework's effectiveness in identifying and addressing these issues. The insights derived from our evaluations, coupled with the reflection on the framework, contribute both conceptually and practically to the field. Our goal is to guide technology builders in designing more context-sensitive sensing technologies, thereby supporting responsible decision-making in this rapidly evolving field.
Over the past decade, deep learning helped solve manipulation problems across all domains of robotics. At the same time, industrial robots continue to be programmed overwhelmingly using traditional program representations and interfaces. This paper undertakes an analysis of this "AI adoption gap" from an industry practitioner's perspective. In response, we propose the BANSAI approach (Bridging the AI Adoption Gap via Neurosymbolic AI). It systematically leverages principles of neurosymbolic AI to establish data-driven, subsymbolic program synthesis and optimization in modern industrial robot programming workflow. BANSAI conceptually unites several lines of prior research and proposes a path toward practical, real-world validation.
Social robots, owing to their embodied physical presence in human spaces and the ability to directly interact with the users and their environment, have a great potential to support children in various activities in education, healthcare and daily life. Child-Robot Interaction (CRI), as any domain involving children, inevitably faces the major challenge of designing generalized strategies to work with unique, turbulent and very diverse individuals. Addressing this challenging endeavor requires to combine the standpoint of the robot-centered perspective, i.e. what robots technically can and are best positioned to do, with that of the child-centered perspective, i.e. what children may gain from the robot and how the robot should act to best support them in reaching the goals of the interaction. This article aims to help researchers bridge the two perspectives and proposes to address the development of CRI scenarios with insights from child psychology and child development theories. To that end, we review the outcomes of the CRI studies, outline common trends and challenges, and identify two key factors from child psychology that impact child-robot interactions, especially in a long-term perspective: developmental stage and individual characteristics. For both of them we discuss prospective experiment designs which support building naturally engaging and sustainable interactions.
Quantization lowers memory usage, computational requirements, and latency by utilizing fewer bits to represent model weights and activations. In this work, we investigate the generalization properties of quantized neural networks, a characteristic that has received little attention despite its implications on model performance. In particular, first, we develop a theoretical model for quantization in neural networks and demonstrate how quantization functions as a form of regularization. Second, motivated by recent work connecting the sharpness of the loss landscape and generalization, we derive an approximate bound for the generalization of quantized models conditioned on the amount of quantization noise. We then validate our hypothesis by experimenting with over 2000 models trained on CIFAR-10, CIFAR-100, and ImageNet datasets on convolutional and transformer-based models.
With the expanding application of Large Language Models (LLMs) in various domains, it becomes imperative to comprehensively investigate their unforeseen behaviors and consequent outcomes. In this study, we introduce and systematically explore the phenomenon of "glitch tokens", which are anomalous tokens produced by established tokenizers and could potentially compromise the models' quality of response. Specifically, we experiment on seven top popular LLMs utilizing three distinct tokenizers and involving a totally of 182,517 tokens. We present categorizations of the identified glitch tokens and symptoms exhibited by LLMs when interacting with glitch tokens. Based on our observation that glitch tokens tend to cluster in the embedding space, we propose GlitchHunter, a novel iterative clustering-based technique, for efficient glitch token detection. The evaluation shows that our approach notably outperforms three baseline methods on eight open-source LLMs. To the best of our knowledge, we present the first comprehensive study on glitch tokens. Our new detection further provides valuable insights into mitigating tokenization-related errors in LLMs.
With large language models (LLMs) widely deployed in long content generation recently, there has emerged an increasing demand for efficient long-sequence inference support. However, key-value (KV) cache, which is stored to avoid re-computation, has emerged as a critical bottleneck by growing linearly in size with the sequence length. Due to the auto-regressive nature of LLMs, the entire KV cache will be loaded for every generated token, resulting in low utilization of computational cores and high latency. While various compression methods for KV cache have been proposed to alleviate this issue, they suffer from degradation in generation quality. We introduce TriForce, a hierarchical speculative decoding system that is scalable to long sequence generation. This approach leverages the original model weights and dynamic sparse KV cache via retrieval as a draft model, which serves as an intermediate layer in the hierarchy and is further speculated by a smaller model to reduce its drafting latency. TriForce not only facilitates impressive speedups for Llama2-7B-128K, achieving up to 2.31$\times$ on an A100 GPU but also showcases scalability in handling even longer contexts. For the offloading setting on two RTX 4090 GPUs, TriForce achieves 0.108s/token$\unicode{x2014}$only half as slow as the auto-regressive baseline on an A100, which attains 7.78$\times$ on our optimized offloading system. Additionally, TriForce performs 4.86$\times$ than DeepSpeed-Zero-Inference on a single RTX 4090 GPU. TriForce's robustness is highlighted by its consistently outstanding performance across various temperatures. The code is available at //github.com/Infini-AI-Lab/TriForce.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
Deep neural models in recent years have been successful in almost every field, including extremely complex problem statements. However, these models are huge in size, with millions (and even billions) of parameters, thus demanding more heavy computation power and failing to be deployed on edge devices. Besides, the performance boost is highly dependent on redundant labeled data. To achieve faster speeds and to handle the problems caused by the lack of data, knowledge distillation (KD) has been proposed to transfer information learned from one model to another. KD is often characterized by the so-called `Student-Teacher' (S-T) learning framework and has been broadly applied in model compression and knowledge transfer. This paper is about KD and S-T learning, which are being actively studied in recent years. First, we aim to provide explanations of what KD is and how/why it works. Then, we provide a comprehensive survey on the recent progress of KD methods together with S-T frameworks typically for vision tasks. In general, we consider some fundamental questions that have been driving this research area and thoroughly generalize the research progress and technical details. Additionally, we systematically analyze the research status of KD in vision applications. Finally, we discuss the potentials and open challenges of existing methods and prospect the future directions of KD and S-T learning.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.