Explainable artificial intelligence techniques are evolving at breakneck speed, but suitable evaluation approaches currently lag behind. With explainers becoming increasingly complex and a lack of consensus on how to assess their utility, it is challenging to judge the benefit and effectiveness of different explanations. To address this gap, we take a step back from complex predictive algorithms and instead look into explainability of simple mathematical models. In this setting, we aim to assess how people perceive comprehensibility of different model representations such as mathematical formulation, graphical representation and textual summarisation (of varying scope). This allows diverse stakeholders -- engineers, researchers, consumers, regulators and the like -- to judge intelligibility of fundamental concepts that more complex artificial intelligence explanations are built from. This position paper charts our approach to establishing appropriate evaluation methodology as well as a conceptual and practical framework to facilitate setting up and executing relevant user studies.
Recent approaches to causal inference have focused on causal effects defined as contrasts between the distribution of counterfactual outcomes under hypothetical interventions on the nodes of a graphical model. In this article we develop theory for causal effects defined with respect to a different type of intervention, one which alters the information propagated through the edges of the graph. These information transfer interventions may be more useful than node interventions in settings in which causes are non-manipulable, for example when considering race or genetics as a causal agent. Furthermore, information transfer interventions allow us to define path-specific decompositions which are identified in the presence of treatment-induced mediator-outcome confounding, a practical problem whose general solution remains elusive. We prove that the proposed effects provide valid statistical tests of mechanisms, unlike popular methods based on randomized interventions on the mediator. We propose efficient non-parametric estimators for a covariance version of the proposed effects, using data-adaptive regression coupled with semi-parametric efficiency theory to address model misspecification bias while retaining $\sqrt{n}$-consistency and asymptotic normality. We illustrate the use of our methods in two examples using publicly available data.
In many forecasting settings, there is a specific interest in predicting the sign of an outcome variable correctly in addition to its magnitude. For instance, when forecasting armed conflicts, positive and negative log-changes in monthly fatalities represent escalation and de-escalation, respectively, and have very different implications. In the ViEWS forecasting challenge, a prediction competition on state-based violence, a novel evaluation score called targeted absolute deviation with direction augmentation (TADDA) has therefore been suggested, which accounts for both for the sign and magnitude of log-changes. While it has a straightforward intuitive motivation, the empirical results of the challenge show that a no-change model always predicting a log-change of zero outperforms all submitted forecasting models under the TADDA score. We provide a statistical explanation for this phenomenon. Analyzing the properties of TADDA, we find that in order to achieve good scores, forecasters often have an incentive to predict no or only modest log-changes. In particular, there is often an incentive to report conservative point predictions considerably closer to zero than the forecaster's actual predictive median or mean. In an empirical application, we demonstrate that a no-change model can be improved upon by tailoring predictions to the particularities of the TADDA score. We conclude by outlining some alternative scoring concepts.
Sustainable development is a framework for achieving human development goals. It provides natural systems' ability to deliver natural resources and ecosystem services. Sustainable development is crucial for the economy and society. Artificial intelligence (AI) has attracted increasing attention in recent years, with the potential to have a positive influence across many domains. AI is a commonly employed component in the quest for long-term sustainability. In this study, we explore the impact of AI on three pillars of sustainable development: society, environment, and economy, as well as numerous case studies from which we may deduce the impact of AI in a variety of areas, i.e., agriculture, classifying waste, smart water management, and Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, we present AI-based strategies for achieving Sustainable Development Goals (SDGs) which are effective for developing countries like Bangladesh. The framework that we propose may reduce the negative impact of AI and promote the proactiveness of this technology.
Metaverse, the core of the next-generation Internet, is a computer-generated holographic digital environment that simultaneously combines spatio-temporal, immersive, real-time, sustainable, interoperable, and data-sensitive characteristics. It cleverly blends the virtual and real worlds, allowing users to create, communicate, and transact in virtual form. With the rapid development of emerging technologies including augmented reality, virtual reality and blockchain, the metaverse system is becoming more and more sophisticated and widely used in various fields such as social, tourism, industry and economy. However, the high level of interaction with the real world also means a huge risk of privacy leakage both for individuals and enterprises, which has hindered the wide deployment of metaverse. Then, it is inevitable to apply privacy computing techniques in the framework of metaverse, which is a current research hotspot. In this paper, we conduct a comprehensive research of the necessity, taxonomy and challenges when privacy computing meets metaverse. Specifically, we first introduce the underlying technologies and various applications of metaverse, on which we analyze the challenges of data usage in metaverse, especially data privacy. Next, we review and summarize state-of-the-art solutions based on federated learning, differential privacy, homomorphic encryption, and zero-knowledge proofs for different privacy problems in metaverse. Finally, we show the current security and privacy challenges in the development of metaverse and provide open directions for building a well-established privacy-preserving metaverse system.
The illusion of consensus occurs when people believe there is consensus across multiple sources, but the sources are the same and thus there is no "true" consensus. We explore this phenomenon in the context of an AI-based intelligent agent designed to augment metacognition on social media. Misinformation, especially on platforms like Twitter, is a global problem for which there is currently no good solution. As an explainable AI (XAI) system, the agent provides explanations for its decisions on the misinformed nature of social media content. In this late-breaking study, we explored the roles of trust (attitude) and reliance (behaviour) as key elements of XAI user experience (UX) and whether these influenced the illusion of consensus. Findings show no effect of trust, but an effect of reliance on consensus-based explanations. This work may guide the design of anti-misinformation systems that use XAI, especially the user-centred design of explanations.
Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.
Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.
Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.
Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is currently studied in various forms within neuroscience. The aim of this review is to recast previous lines of research in the study of biological intelligence within the lens of meta-learning, placing these works into a common framework. More recent points of interaction between AI and neuroscience will be discussed, as well as interesting new directions that arise under this perspective.
In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.