亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we explore few-shot imitation learning for control problems, which involves learning to imitate a target policy by accessing a limited set of offline rollouts. This setting has been relatively under-explored despite its relevance to robotics and control applications. State-of-the-art methods developed to tackle few-shot imitation rely on meta-learning, which is expensive to train as it requires access to a distribution over tasks (rollouts from many target policies and variations of the base environment). Given this limitation we investigate an alternative approach, fine-tuning, a family of methods that pretrain on a single dataset and then fine-tune on unseen domain-specific data. Recent work has shown that fine-tuners outperform meta-learners in few-shot image classification tasks, especially when the data is out-of-domain. Here we evaluate to what extent this is true for control problems, proposing a simple yet effective baseline which relies on two stages: (i) training a base policy online via reinforcement learning (e.g. Soft Actor-Critic) on a single base environment, (ii) fine-tuning the base policy via behavioral cloning on a few offline rollouts of the target policy. Despite its simplicity this baseline is competitive with meta-learning methods on a variety of conditions and is able to imitate target policies trained on unseen variations of the original environment. Importantly, the proposed approach is practical and easy to implement, as it does not need any complex meta-training protocol. As a further contribution, we release an open source dataset called iMuJoCo (iMitation MuJoCo) consisting of 154 variants of popular OpenAI-Gym MuJoCo environments with associated pretrained target policies and rollouts, which can be used by the community to study few-shot imitation learning and offline reinforcement learning.

相關內容

小樣本學習(xi)(Few-Shot Learning,以下簡稱 FSL )用于解決當可(ke)用的(de)(de)數據(ju)量比較少時,如何提升神(shen)(shen)經(jing)(jing)網絡的(de)(de)性能。在 FSL 中,經(jing)(jing)常用到的(de)(de)一類(lei)方(fang)法(fa)被稱為 Meta-learning。和(he)普通的(de)(de)神(shen)(shen)經(jing)(jing)網絡的(de)(de)訓練(lian)方(fang)法(fa)一樣,Meta-learning 也包含訓練(lian)過(guo)程和(he)測試過(guo)程,但(dan)是它的(de)(de)訓練(lian)過(guo)程被稱作 Meta-training 和(he) Meta-testing。

Annotation of discourse relations is a known difficult task, especially for non-expert annotators. In this paper, we investigate novice annotators' uncertainty on the annotation of discourse relations on spoken conversational data. We find that dialogue context (single turn, pair of turns within speaker, and pair of turns across speakers) is a significant predictor of confidence scores. We compute distributed representations of discourse relations from co-occurrence statistics that incorporate information about confidence scores and dialogue context. We perform a hierarchical clustering analysis using these representations and show that weighting discourse relation representations with information about confidence and dialogue context coherently models our annotators' uncertainty about discourse relation labels.

In this paper, we consider the closed-loop control problem of nonlinear robotic systems in the presence of probabilistic uncertainties and disturbances. More precisely, we design a state feedback controller that minimizes deviations of the states of the system from the nominal state trajectories due to uncertainties and disturbances. Existing approaches to address the control problem of probabilistic systems are limited to particular classes of uncertainties and systems such as Gaussian uncertainties and processes and linearized systems. We present an approach that deals with nonlinear dynamics models and arbitrary known probabilistic uncertainties. We formulate the controller design problem as an optimization problem in terms of statistics of the probability distributions including moments and characteristic functions. In particular, in the provided optimization problem, we use moments and characteristic functions to propagate uncertainties throughout the nonlinear motion model of robotic systems. In order to reduce the tracking deviations, we minimize the uncertainty of the probabilistic states around the nominal trajectory by minimizing the trace and the determinant of the covariance matrix of the probabilistic states. To obtain the state feedback gains, we solve deterministic optimization problems in terms of moments, characteristic functions, and state feedback gains using off-the-shelf interior-point optimization solvers. To illustrate the performance of the proposed method, we compare our method with existing probabilistic control methods.

We consider the problem of interactive decision making, encompassing structured bandits and reinforcement learning with general function approximation. Recently, Foster et al. (2021) introduced the Decision-Estimation Coefficient, a measure of statistical complexity that lower bounds the optimal regret for interactive decision making, as well as a meta-algorithm, Estimation-to-Decisions, which achieves upper bounds in terms of the same quantity. Estimation-to-Decisions is a reduction, which lifts algorithms for (supervised) online estimation into algorithms for decision making. In this paper, we show that by combining Estimation-to-Decisions with a specialized form of optimistic estimation introduced by Zhang (2022), it is possible to obtain guarantees that improve upon those of Foster et al. (2021) by accommodating more lenient notions of estimation error. We use this approach to derive regret bounds for model-free reinforcement learning with value function approximation, and give structural results showing when it can and cannot help more generally.

We investigate the emergent abilities of the recently proposed web-scale speech model Whisper, by adapting it to unseen tasks with prompt engineering. We selected three tasks: audio-visual speech recognition (AVSR), code-switched speech recognition (CS-ASR), and speech translation (ST) on unseen language pairs. We design task-specific prompts, by either leveraging another large-scale model, or simply manipulating the special tokens in the default prompts. Experiments show that compared to the default prompts, our proposed prompts improve performance by 10% to 45% on the three zero-shot tasks, and even outperform SotA supervised models on some datasets. In addition, our experiments reveal many interesting properties of Whisper, including its robustness to prompts, bias on accents, and the multilingual understanding in its latent space. Code is available at //github.com/jasonppy/PromptingWhisper

In this paper, we propose a novel framework for synthesizing a single multimodal control policy capable of generating diverse behaviors (or modes) and emergent inherent transition maneuvers for bipedal locomotion. In our method, we first learn efficient latent encodings for each behavior by training an autoencoder from a dataset of rough reference motions. These latent encodings are used as commands to train a multimodal policy through an adaptive sampling of modes and transitions to ensure consistent performance across different behaviors. We validate the policy performance in simulation for various distinct locomotion modes such as walking, leaping, jumping on a block, standing idle, and all possible combinations of inter-mode transitions. Finally, we integrate a task-based planner to rapidly generate open-loop mode plans for the trained multimodal policy to solve high-level tasks like reaching a goal position on a challenging terrain. Complex parkour-like motions by smoothly combining the discrete locomotion modes were generated in 3 min. to traverse tracks with a gap of width 0.45 m, a plateau of height 0.2 m, and a block of height 0.4 m, which are all significant compared to the dimensions of our mini-biped platform.

In this paper, we study the Bayesian multi-task variable selection problem, where the goal is to select activated variables for multiple related data sets simultaneously. Our proposed method generalizes the spike-and-slab prior to multiple data sets, and we prove its posterior consistency in high-dimensional regimes. To calculate the posterior distribution, we propose a novel variational Bayes algorithm based on the recently developed "sum of single effects" model of Wang et al. (2020). Finally, motivated by differential gene network analysis in biology, we extend our method to joint learning of multiple directed acyclic graphical models. Both simulation studies and real gene expression data analysis are conducted to show the effectiveness of the proposed method.

In this paper, we propose a method for addressing the issue of unnoticed catastrophic deployment and domain shift in neural networks for semantic segmentation in autonomous driving. Our approach is based on the idea that deep learning-based perception for autonomous driving is uncertain and best represented as a probability distribution. As autonomous vehicles' safety is paramount, it is crucial for perception systems to recognize when the vehicle is leaving its operational design domain, anticipate hazardous uncertainty, and reduce the performance of the perception system. To address this, we propose to encapsulate the neural network under deployment within an uncertainty estimation envelope that is based on the epistemic uncertainty estimation through the Monte Carlo Dropout approach. This approach does not require modification of the deployed neural network and guarantees expected model performance. Our defensive perception envelope has the capability to estimate a neural network's performance, enabling monitoring and notification of entering domains of reduced neural network performance under deployment. Furthermore, our envelope is extended by novel methods to improve the application in deployment settings, including reducing compute expenses and confining estimation noise. Finally, we demonstrate the applicability of our method for multiple different potential deployment shifts relevant to autonomous driving, such as transitions into the night, rainy, or snowy domain. Overall, our approach shows great potential for application in deployment settings and enables operational design domain recognition via uncertainty, which allows for defensive perception, safe state triggers, warning notifications, and feedback for testing or development and adaptation of the perception stack.

In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.

Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司