亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the problem of the nonparametric estimation for the density $\pi$ of the stationary distribution of a $d$-dimensional stochastic differential equation $(X_t)_{t \in [0, T]}$. From the continuous observation of the sampling path on $[0, T]$, we study the rate of estimation of $\pi(x)$ as $T$ goes to infinity. One finding is that, for $d \ge 3$, the rate of estimation depends on the smoothness $\beta = (\beta_1, ... , \beta_d)$ of $\pi$. In particular, having ordered the smoothness such that $\beta_1 \le ... \le \beta_d$, it depends on the fact that $\beta_2 < \beta_3$ or $\beta_2 = \beta_3$. We show that kernel density estimators achieve the rate $(\frac{\log T}{T})^\gamma$ in the first case and $(\frac{1}{T})^\gamma$ in the second, for an explicit exponent $\gamma$ depending on the dimension and on $\bar{\beta}_3$, the harmonic mean of the smoothness over the $d$ directions after having removed $\beta_1$ and $\beta_2$, the smallest ones. Moreover, we obtain a minimax lower bound on the $\mathbf{L}^2$-risk for the pointwise estimation with the same rates $(\frac{\log T}{T})^\gamma$ or $(\frac{1}{T})^\gamma$, depending on the value of $\beta_2$ and $\beta_3$.

相關內容

We consider a generic and explicit tamed Euler--Maruyama scheme for multidimensional time-inhomogeneous stochastic differential equations with multiplicative Brownian noise. The diffusion coefficient is uniformly elliptic, H\"older continuous and weakly differentiable in the spatial variables while the drift satisfies the Ladyzhenskaya--Prodi--Serrin condition, as considered by Krylov and R\"ockner (2005). In the discrete scheme, the drift is tamed by replacing it by an approximation. A strong rate of convergence of the scheme is provided in terms of the approximation error of the drift in a suitable and possibly very weak topology. A few examples of approximating drifts are discussed in detail. The parameters of the approximating drifts can vary and be fine-tuned to achieve the standard $1/2$-strong convergence rate with a logarithmic factor.

In Chen and Zhou 2021, they consider an inference problem for an Ornstein-Uhlenbeck process driven by a general one-dimensional centered Gaussian process $(G_t)_{t\ge 0}$. The second order mixed partial derivative of the covariance function $ R(t,\, s)=\mathbb{E}[G_t G_s]$ can be decomposed into two parts, one of which coincides with that of fractional Brownian motion and the other is bounded by $(ts)^{H-1}$ with $H\in (\frac12,\,1)$, up to a constant factor. In this paper, we investigate the same problem but with the assumption of $H\in (0,\,\frac12)$. The starting point of this paper is a new relationship between the inner product of $\mathfrak{H}$ and that of the Hilbert space $\mathfrak{H}_1$ associated with the fractional Brownian motion $(B^{H}_t)_{t\ge 0}$. Based on this relationship and some known estimation of the inner product of $\mathfrak{H}_1$, we prove the strong consistency with $H\in (0, \frac12)$, and the asymptotic normality and the Berry-Ess\'{e}en bounds with $H\in (0,\frac38)$ for both the least squares estimator and the moment estimator of the drift parameter constructed from the continuous observations.

The Minkowski functionals, including the Euler characteristic statistics, are standard tools for morphological analysis in cosmology. Motivated by cosmological research, we examine the Minkowski functional of the excursion set for an isotropic central limit random field, the $k$-point correlation functions ($k$th order cumulants) of which have the same structure as that assumed in cosmic research. We derive the asymptotic expansions of the expected Euler characteristic density incorporating skewness and kurtosis, which is a building block of the Minkowski functional. The resulting formula reveals the types of non-Gaussianity that cannot be captured by the Minkowski functionals. As an example, we consider an isotropic chi-square random field, and confirm that the asymptotic expansion precisely approximates the true Euler characteristic density.

We study a class of algorithms for solving bilevel optimization problems in both stochastic and deterministic settings when the inner-level objective is strongly convex. Specifically, we consider algorithms based on inexact implicit differentiation and we exploit a warm-start strategy to amortize the estimation of the exact gradient. We then introduce a unified theoretical framework inspired by the study of singularly perturbed systems (Habets, 1974) to analyze such amortized algorithms. By using this framework, our analysis shows these algorithms to match the computational complexity of oracle methods that have access to an unbiased estimate of the gradient, thus outperforming many existing results for bilevel optimization. We illustrate these findings on synthetic experiments and demonstrate the efficiency of these algorithms on hyper-parameter optimization experiments involving several thousands of variables.

A distributional symmetry is invariance of a distribution under a group of transformations. Exchangeability and stationarity are examples. We explain that a result of ergodic theory provides a law of large numbers: If the group satisfies suitable conditions, expectations can be estimated by averaging over subsets of transformations, and these estimators are strongly consistent. We show that, if a mixing condition holds, the averages also satisfy a central limit theorem, a Berry-Esseen bound, and concentration. These are extended further to apply to triangular arrays, to randomly subsampled averages, and to a generalization of U-statistics. As applications, we obtain new results on exchangeability, random fields, network models, and a class of marked point processes. We also establish asymptotic normality of the empirical entropy for a large class of processes. Some known results are recovered as special cases, and can hence be interpreted as an outcome of symmetry. The proofs adapt Stein's method.

In this paper, we study the numerical method for approximating the random periodic solution of a semiliear stochastic evolution equation with an additive noise. The main challenge lies in proving a convergence over an infinite time horizon while simulating infinite-dimensional objects. We propose a Galerkin-type exponential integrator scheme and establish its convergence rate of the strong error to the mild solution.

Consider the problem of learning a large number of response functions simultaneously based on the same input variables. The training data consist of a single independent random sample of the input variables drawn from a common distribution together with the associated responses. The input variables are mapped into a high-dimensional linear space, called the feature space, and the response functions are modelled as linear functionals of the mapped features, with coefficients calibrated via ordinary least squares. We provide convergence guarantees on the worst-case excess prediction risk by controlling the convergence rate of the excess risk uniformly in the response function. The dimension of the feature map is allowed to tend to infinity with the sample size. The collection of response functions, although potentially infinite, is supposed to have a finite Vapnik-Chervonenkis dimension. The bound derived can be applied when building multiple surrogate models in a reasonable computing time.

A common approach to tackle a combinatorial optimization problem is to first solve a continuous relaxation and then round the obtained fractional solution. For the latter, the framework of contention resolution schemes (or CR schemes), introduced by Chekuri, Vondrak, and Zenklusen, is a general and successful tool. A CR scheme takes a fractional point $x$ in a relaxation polytope, rounds each coordinate $x_i$ independently to get a possibly non-feasible set, and then drops some elements in order to satisfy the independence constraints. Intuitively, a CR scheme is $c$-balanced if every element $i$ is selected with probability at least $c \cdot x_i$. It is known that general matroids admit a $(1-1/e)$-balanced CR scheme, and that this is (asymptotically) optimal. This is in particular true for the special case of uniform matroids of rank one. In this work, we provide a simple and explicit monotone CR scheme with a balancedness of $1 - \binom{n}{k}\:\left(1-\frac{k}{n}\right)^{n+1-k}\:\left(\frac{k}{n}\right)^k$, and show that this is optimal. As $n$ grows, this expression converges from above to $1 - e^{-k}k^k/k!$. While this asymptotic bound can be obtained by combining previously known results, these require defining an exponential-sized linear program, as well as using random sampling and the ellipsoid algorithm. Our procedure, on the other hand, has the advantage of being simple and explicit. Moreover, this scheme generalizes into an optimal CR scheme for partition matroids.

We study the problem of density estimation for a random vector ${\boldsymbol X}$ in $\mathbb R^d$ with probability density $f(\boldsymbol x)$. For a spanning tree $T$ defined on the vertex set $\{1,\dots ,d\}$, the tree density $f_{T}$ is a product of bivariate conditional densities. The optimal spanning tree $T^*$ is the spanning tree $T$, for which the Kullback-Leibler divergence of $f$ and $f_{T}$ is the smallest. From i.i.d. data we identify the optimal tree $T^*$ and computationally efficiently construct a tree density estimate $f_n$ such that, without any regularity conditions on the density $f$, one has that $\lim_{n\to \infty} \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x=0$ a.s. For Lipschitz continuous $f$ with bounded support, $\mathbb E\{ \int |f_n(\boldsymbol x)-f_{T^*}(\boldsymbol x)|d\boldsymbol x\}=O(n^{-1/4})$.

The estimation of information measures of continuous distributions based on samples is a fundamental problem in statistics and machine learning. In this paper, we analyze estimates of differential entropy in $K$-dimensional Euclidean space, computed from a finite number of samples, when the probability density function belongs to a predetermined convex family $\mathcal{P}$. First, estimating differential entropy to any accuracy is shown to be infeasible if the differential entropy of densities in $\mathcal{P}$ is unbounded, clearly showing the necessity of additional assumptions. Subsequently, we investigate sufficient conditions that enable confidence bounds for the estimation of differential entropy. In particular, we provide confidence bounds for simple histogram based estimation of differential entropy from a fixed number of samples, assuming that the probability density function is Lipschitz continuous with known Lipschitz constant and known, bounded support. Our focus is on differential entropy, but we provide examples that show that similar results hold for mutual information and relative entropy as well.

北京阿比特科技有限公司