Named Entity Recognition (NER) is a cornerstone NLP task while its robustness has been given little attention. This paper rethinks the principles of NER attacks derived from sentence classification, as they can easily violate the label consistency between the original and adversarial NER examples. This is due to the fine-grained nature of NER, as even minor word changes in the sentence can result in the emergence or mutation of any entities, resulting in invalid adversarial examples. To this end, we propose a novel one-word modification NER attack based on a key insight, NER models are always vulnerable to the boundary position of an entity to make their decision. We thus strategically insert a new boundary into the sentence and trigger the Entity Boundary Interference that the victim model makes the wrong prediction either on this boundary word or on other words in the sentence. We call this attack Virtual Boundary Attack (ViBA), which is shown to be remarkably effective when attacking both English and Chinese models with a 70%-90% attack success rate on state-of-the-art language models (e.g. RoBERTa, DeBERTa) and also significantly faster than previous methods.
Model inversion attacks involve reconstructing the training data of a target model, which raises serious privacy concerns for machine learning models. However, these attacks, especially learning-based methods, are likely to suffer from low attack accuracy, i.e., low classification accuracy of these reconstructed data by machine learning classifiers. Recent studies showed an alternative strategy of model inversion attacks, GAN-based optimization, can improve the attack accuracy effectively. However, these series of GAN-based attacks reconstruct only class-representative training data for a class, whereas learning-based attacks can reconstruct diverse data for different training data in each class. Hence, in this paper, we propose a new training paradigm for a learning-based model inversion attack that can achieve higher attack accuracy in a black-box setting. First, we regularize the training process of the attack model with an added semantic loss function and, second, we inject adversarial examples into the training data to increase the diversity of the class-related parts (i.e., the essential features for classification tasks) in training data. This scheme guides the attack model to pay more attention to the class-related parts of the original data during the data reconstruction process. The experimental results show that our method greatly boosts the performance of existing learning-based model inversion attacks. Even when no extra queries to the target model are allowed, the approach can still improve the attack accuracy of reconstructed data. This new attack shows that the severity of the threat from learning-based model inversion adversaries is underestimated and more robust defenses are required.
Natural language processing (NLP) models have become increasingly popular in real-world applications, such as text classification. However, they are vulnerable to privacy attacks, including data reconstruction attacks that aim to extract the data used to train the model. Most previous studies on data reconstruction attacks have focused on LLM, while classification models were assumed to be more secure. In this work, we propose a new targeted data reconstruction attack called the Mix And Match attack, which takes advantage of the fact that most classification models are based on LLM. The Mix And Match attack uses the base model of the target model to generate candidate tokens and then prunes them using the classification head. We extensively demonstrate the effectiveness of the attack using both random and organic canaries. This work highlights the importance of considering the privacy risks associated with data reconstruction attacks in classification models and offers insights into possible leakages.
The ability of generative models to produce highly realistic synthetic face images has raised security and ethical concerns. As a first line of defense against such fake faces, deep learning based forensic classifiers have been developed. While these forensic models can detect whether a face image is synthetic or real with high accuracy, they are also vulnerable to adversarial attacks. Although such attacks can be highly successful in evading detection by forensic classifiers, they introduce visible noise patterns that are detectable through careful human scrutiny. Additionally, these attacks assume access to the target model(s) which may not always be true. Attempts have been made to directly perturb the latent space of GANs to produce adversarial fake faces that can circumvent forensic classifiers. In this work, we go one step further and show that it is possible to successfully generate adversarial fake faces with a specified set of attributes (e.g., hair color, eye size, race, gender, etc.). To achieve this goal, we leverage the state-of-the-art generative model StyleGAN with disentangled representations, which enables a range of modifications without leaving the manifold of natural images. We propose a framework to search for adversarial latent codes within the feature space of StyleGAN, where the search can be guided either by a text prompt or a reference image. We also propose a meta-learning based optimization strategy to achieve transferable performance on unknown target models. Extensive experiments demonstrate that the proposed approach can produce semantically manipulated adversarial fake faces, which are true to the specified attribute set and can successfully fool forensic face classifiers, while remaining undetectable by humans. Code: //github.com/koushiksrivats/face_attribute_attack.
Named entity recognition (NER) is used to extract information from various documents and texts such as names and dates. It is important to extract education and work experience information from resumes in order to filter them. Considering the fact that all information in a resume has to be entered to the companys system manually, automatizing this process will save time of the companies. In this study, a deep learning-based semi-automatic named entity recognition system has been implemented with a focus on resumes in the field of IT. Firstly, resumes of employees from five different IT related fields has been annotated. Six transformer based pre-trained models have been adapted to named entity recognition problem using the annotated data. These models have been selected among popular models in the natural language processing field. The obtained system can recognize eight different entity types which are city, date, degree, diploma major, job title, language, country and skill. Models used in the experiments are compared using micro, macro and weighted F1 scores and the performance of the methods was evaluated. Taking these scores into account for test set the best micro and weighted F1 score is obtained by RoBERTa and the best macro F1 score is obtained by Electra model.
With the rapid development of deep neural networks(DNNs), many robust blind watermarking algorithms and frameworks have been proposed and achieved good results. At present, the watermark attack algorithm can not compete with the watermark addition algorithm. And many watermark attack algorithms only care about interfering with the normal extraction of the watermark, and the watermark attack will cause great visual loss to the image. To this end, we propose DiffWA, a conditional diffusion model with distance guidance for watermark attack, which can restore the image while removing the embedded watermark. The core of our method is training an image-to-image conditional diffusion model on unwatermarked images and guiding the conditional model using a distance guidance when sampling so that the model will generate unwatermarked images which is similar to original images. We conducted experiments on CIFAR-10 using our proposed models. The results shows that the model can remove the watermark with good effect and make the bit error rate of watermark extraction higher than 0.4. At the same time, the attacked image will maintain good visual effect with PSNR more than 31 and SSIM more than 0.97 compared with the original image.
Tactile sensing plays an irreplaceable role in robotic material recognition. It enables robots to distinguish material properties such as their local geometry and textures, especially for materials like textiles. However, most tactile recognition methods can only classify known materials that have been touched and trained with tactile data, yet cannot classify unknown materials that are not trained with tactile data. To solve this problem, we propose a tactile zero-shot learning framework to recognise unknown materials when they are touched for the first time without requiring training tactile samples. The visual modality, providing tactile cues from sight, and semantic attributes, giving high-level characteristics, are combined together to bridge the gap between touched classes and untouched classes. A generative model is learnt to synthesise tactile features according to corresponding visual images and semantic embeddings, and then a classifier can be trained using the synthesised tactile features of untouched materials for zero-shot recognition. Extensive experiments demonstrate that our proposed multimodal generative model can achieve a high recognition accuracy of 83.06% in classifying materials that were not touched before. The robotic experiment demo and the dataset are available at //sites.google.com/view/multimodalzsl.
Sequential recommendation as an emerging topic has attracted increasing attention due to its important practical significance. Models based on deep learning and attention mechanism have achieved good performance in sequential recommendation. Recently, the generative models based on Variational Autoencoder (VAE) have shown the unique advantage in collaborative filtering. In particular, the sequential VAE model as a recurrent version of VAE can effectively capture temporal dependencies among items in user sequence and perform sequential recommendation. However, VAE-based models suffer from a common limitation that the representational ability of the obtained approximate posterior distribution is limited, resulting in lower quality of generated samples. This is especially true for generating sequences. To solve the above problem, in this work, we propose a novel method called Adversarial and Contrastive Variational Autoencoder (ACVAE) for sequential recommendation. Specifically, we first introduce the adversarial training for sequence generation under the Adversarial Variational Bayes (AVB) framework, which enables our model to generate high-quality latent variables. Then, we employ the contrastive loss. The latent variables will be able to learn more personalized and salient characteristics by minimizing the contrastive loss. Besides, when encoding the sequence, we apply a recurrent and convolutional structure to capture global and local relationships in the sequence. Finally, we conduct extensive experiments on four real-world datasets. The experimental results show that our proposed ACVAE model outperforms other state-of-the-art methods.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.
In this paper we investigate the role of the dependency tree in a named entity recognizer upon using a set of GCN. We perform a comparison among different NER architectures and show that the grammar of a sentence positively influences the results. Experiments on the ontonotes dataset demonstrate consistent performance improvements, without requiring heavy feature engineering nor additional language-specific knowledge.