Many integral equation-based methods are available for problems of time-harmonic electromagnetic scattering from perfect electric conductors. Moreover, there are numerous ways in which the geometry can be represented, numerous ways to represent the relevant surface current and/or charge densities, numerous quadrature methods that can be deployed, and numerous fast methods that can be used to accelerate the solution of the large linear systems which arise from discretization. Among the many issues that arise in such scattering calculations are the avoidance of spurious resonances, the applicability of the chosen method to scatterers of non-trivial topology, the robustness of the method when applied to objects with multiscale features, the stability of the method under mesh refinement, the ease of implementation with high-order basis functions, and the behavior of the method as the frequency tends to zero. Since three-dimensional scattering is a challenging, large-scale problem, many of these issues have been historically difficult to investigate. It is only with the advent of fast algorithms and modern iterative methods that a careful study of these issues can be carried out effectively. In this paper, we use GMRES as our iterative solver and the fast multipole method as our acceleration scheme in order to investigate some of these questions. In particular, we compare the behavior of the following integral equation formulations with regard to the issues noted above: the standard electric, magnetic, and combined field integral equations with standard RWG basis functions, the non-resonant charge-current integral equation, the electric charge-current integral equation, the augmented regularized combined source integral equation and the decoupled potential integral equation DPIE. Various numerical results are provided to demonstrate the behavior of each of these schemes.
In this paper, we propose a method for estimating model parameters using Small-Angle Scattering (SAS) data based on the Bayesian inference. Conventional SAS data analyses involve processes of manual parameter adjustment by analysts or optimization using gradient methods. These analysis processes tend to involve heuristic approaches and may lead to local solutions.Furthermore, it is difficult to evaluate the reliability of the results obtained by conventional analysis methods. Our method solves these problems by estimating model parameters as probability distributions from SAS data using the framework of the Bayesian inference. We evaluate the performance of our method through numerical experiments using artificial data of representative measurement target models.From the results of the numerical experiments, we show that our method provides not only high accuracy and reliability of estimation, but also perspectives on the transition point of estimability with respect to the measurement time and the lower bound of the angular domain of the measured data.
The optimal branch number of MDS matrices makes them a preferred choice for designing diffusion layers in many block ciphers and hash functions. However, in lightweight cryptography, Near-MDS (NMDS) matrices with sub-optimal branch numbers offer a better balance between security and efficiency as a diffusion layer, compared to MDS matrices. In this paper, we study NMDS matrices, exploring their construction in both recursive and nonrecursive settings. We provide several theoretical results and explore the hardware efficiency of the construction of NMDS matrices. Additionally, we make comparisons between the results of NMDS and MDS matrices whenever possible. For the recursive approach, we study the DLS matrices and provide some theoretical results on their use. Some of the results are used to restrict the search space of the DLS matrices. We also show that over a field of characteristic 2, any sparse matrix of order $n\geq 4$ with fixed XOR value of 1 cannot be an NMDS when raised to a power of $k\leq n$. Following that, we use the generalized DLS (GDLS) matrices to provide some lightweight recursive NMDS matrices of several orders that perform better than the existing matrices in terms of hardware cost or the number of iterations. For the nonrecursive construction of NMDS matrices, we study various structures, such as circulant and left-circulant matrices, and their generalizations: Toeplitz and Hankel matrices. In addition, we prove that Toeplitz matrices of order $n>4$ cannot be simultaneously NMDS and involutory over a field of characteristic 2. Finally, we use GDLS matrices to provide some lightweight NMDS matrices that can be computed in one clock cycle. The proposed nonrecursive NMDS matrices of orders 4, 5, 6, 7, and 8 can be implemented with 24, 50, 65, 96, and 108 XORs over $\mathbb{F}_{2^4}$, respectively.
The scattering of electromagnetic waves by three--dimensional periodic structures is important for many problems of crucial scientific and engineering interest. Due to the complexity and three-dimensional nature of these waves, the fast, accurate, and reliable numerical simulations of these are indispensable for engineers and scientists alike. For this, High Order Spectral methods are frequently employed and here we describe an algorithm in this class. Our approach is perturbative in nature where we view the deviation of the permittivity from a constant value as the deformation and we pursue regular perturbation theory. This work extends our previous contribution regarding the Helmholtz equation to the full vector Maxwell equations, by providing a rigorous analyticity theory, both in deformation size and spatial variable (provided that the permittivity is, itself, analytic).
The Gromov--Hausdorff distance measures the difference in shape between compact metric spaces and poses a notoriously difficult problem in combinatorial optimization. We introduce its quadratic relaxation over a convex polytope whose solutions provably deliver the Gromov--Hausdorff distance. The optimality guarantee is enabled by the fact that the search space of our approach is not constrained to a generalization of bijections, unlike in other relaxations such as the Gromov--Wasserstein distance. We suggest the Frank--Wolfe algorithm for solving the relaxation in $O(n^3)$ time per iteration, and numerically demonstrate its performance on metric spaces of hundreds of points. In particular, we use it to obtain a new bound of the Gromov--Hausdorff distance between the unit circle and the unit hemisphere equipped with Euclidean metric. Our approach is implemented as a Python package dGH.
A nonlinear optimization method is proposed for the solution of inverse medium problems with spatially varying properties. To avoid the prohibitively large number of unknown control variables resulting from standard grid-based representations, the misfit is instead minimized in a small subspace spanned by the first few eigenfunctions of a judicious elliptic operator, which itself depends on the previous iteration. By repeatedly adapting both the dimension and the basis of the search space, regularization is inherently incorporated at each iteration without the need for extra Tikhonov penalization. Convergence is proved under an angle condition, which is included into the resulting \emph{Adaptive Spectral Inversion} (ASI) algorithm. The ASI approach compares favorably to standard grid-based inversion using $L^2$-Tikhonov regularization when applied to an elliptic inverse problem. The improved accuracy resulting from the newly included angle condition is further demonstrated via numerical experiments from time-dependent inverse scattering problems.
Non-linear model predictive control (nMPC) is a powerful approach to control complex robots (such as humanoids, quadrupeds, or unmanned aerial manipulators (UAMs)) as it brings important advantages over other existing techniques. The full-body dynamics, along with the prediction capability of the optimal control problem (OCP) solved at the core of the controller, allows to actuate the robot in line with its dynamics. This fact enhances the robot capabilities and allows, e.g., to perform intricate maneuvers at high dynamics while optimizing the amount of energy used. Despite the many similarities between humanoids or quadrupeds and UAMs, full-body torque-level nMPC has rarely been applied to UAMs. This paper provides a thorough description of how to use such techniques in the field of aerial manipulation. We give a detailed explanation of the different parts involved in the OCP, from the UAM dynamical model to the residuals in the cost function. We develop and compare three different nMPC controllers: Weighted MPC, Rail MPC, and Carrot MPC, which differ on the structure of their OCPs and on how these are updated at every time step. To validate the proposed framework, we present a wide variety of simulated case studies. First, we evaluate the trajectory generation problem, i.e., optimal control problems solved offline, involving different kinds of motions (e.g., aggressive maneuvers or contact locomotion) for different types of UAMs. Then, we assess the performance of the three nMPC controllers, i.e., closed-loop controllers solved online, through a variety of realistic simulations. For the benefit of the community, we have made available the source code related to this work.
DeepLab is a widely used deep neural network for semantic segmentation, whose success is attributed to its parallel architecture called atrous spatial pyramid pooling (ASPP). ASPP uses multiple atrous convolutions with different atrous rates to extract both local and global information. However, fixed values of atrous rates are used for the ASPP module, which restricts the size of its field of view. In principle, atrous rate should be a hyperparameter to change the field of view size according to the target task or dataset. However, the manipulation of atrous rate is not governed by any guidelines. This study proposes practical guidelines for obtaining an optimal atrous rate. First, an effective receptive field for semantic segmentation is introduced to analyze the inner behavior of segmentation networks. We observed that the use of ASPP module yielded a specific pattern in the effective receptive field, which was traced to reveal the module's underlying mechanism. Accordingly, we derive practical guidelines for obtaining the optimal atrous rate, which should be controlled based on the size of input image. Compared to other values, using the optimal atrous rate consistently improved the segmentation results across multiple datasets, including the STARE, CHASE_DB1, HRF, Cityscapes, and iSAID datasets.
According to ICH Q8 guidelines, the biopharmaceutical manufacturer submits a design space (DS) definition as part of the regulatory approval application, in which case process parameter (PP) deviations within this space are not considered a change and do not trigger a regulatory post approval procedure. A DS can be described by non-linear PP ranges, i.e., the range of one PP conditioned on specific values of another. However, independent PP ranges (linear combinations) are often preferred in biopharmaceutical manufacturing due to their operation simplicity. While some statistical software supports the calculation of a DS comprised of linear combinations, such methods are generally based on discretizing the parameter space - an approach that scales poorly as the number of PPs increases. Here, we introduce a novel method for finding linear PP combinations using a numeric optimizer to calculate the largest design space within the parameter space that results in critical quality attribute (CQA) boundaries within acceptance criteria, predicted by a regression model. A precomputed approximation of tolerance intervals is used in inequality constraints to facilitate fast evaluations of this boundary using a single matrix multiplication. Correctness of the method was validated against different ground truths with known design spaces. Compared to stateof-the-art, grid-based approaches, the optimizer-based procedure is more accurate, generally yields a larger DS and enables the calculation in higher dimensions. Furthermore, a proposed weighting scheme can be used to favor certain PPs over others and therefore enabling a more dynamic approach to DS definition and exploration. The increased PP ranges of the larger DS provide greater operational flexibility for biopharmaceutical manufacturers.
The nonlocal Cahn-Hilliard (NCH) equation with nonlocal diffusion operator is more suitable for the simulation of microstructure phase transition than the local Cahn-Hilliard (LCH) equation. In this paper, based on the exponential semi-implicit scalar auxiliary variable (ESI-SAV) method, the highly effcient and accurate schemes in time with unconditional energy stability for solving the NCH equation are proposed. On the one hand, we have demostrated the unconditional energy stability for the NCH equation with its high-order semi-discrete schemes carefully and rigorously. On the other hand, in order to reduce the calculation and storage cost in numerical simulation, we use the fast solver based on FFT and FCG for spatial discretization. Some numerical simulations involving the Gaussian kernel are presented and show the stability, accuracy, efficiency and unconditional energy stability of the proposed schemes.
We consider estimation of parameters defined as linear functionals of solutions to linear inverse problems. Any such parameter admits a doubly robust representation that depends on the solution to a dual linear inverse problem, where the dual solution can be thought as a generalization of the inverse propensity function. We provide the first source condition double robust inference method that ensures asymptotic normality around the parameter of interest as long as either the primal or the dual inverse problem is sufficiently well-posed, without knowledge of which inverse problem is the more well-posed one. Our result is enabled by novel guarantees for iterated Tikhonov regularized adversarial estimators for linear inverse problems, over general hypothesis spaces, which are developments of independent interest.