Assistive listening systems (ALSs) dramatically increase speech intelligibility and reduce listening effort. It is very likely that essentially everyone, not only individuals with hearing loss, would benefit from the increased signal-to-noise ratio an ALS provides in almost any listening scenario. However, ALSs are rarely used by anyone other than people with severe to profound hearing losses. To date, the reasons for this poor adoption have not been systematically investigated. The authors hypothesize that the reasons for poor adoption of assistive listening technology include (1) an inability to use personally owned receiving devices, (2) a lack of high-fidelity stereo sound, (3) receiving devices not providing an unoccluded listening experience, (4) distortion from alignment delay and (5) a lack of automatic connectivity to an available assistive listening audio signal. We propose solutions to each of these problems in an effort to pave the way for mass adoption of assistive listening technology by the general public.
We consider the effects of allowing a finite state verifier in an interactive proof system to use a bounded number of private coins, in addition to "public" coins whose outcomes are visible to the prover. Although swapping between private and public-coin machines does not change the class of verifiable languages when the verifiers are given reasonably large time and space bounds, this distinction has well known effects for the capabilities of constant space verifiers. We show that a constant private-coin "budget" (independent of the length of the input) increases the power of public-coin interactive proofs with finite state verifiers considerably, and provide a new characterization of the complexity class $\rm P$ as the set of languages that are verifiable by such machines with arbitrarily small error in expected polynomial time.
Personal mobility data from mobile phones and other sensors are increasingly used to inform policymaking during pandemics, natural disasters, and other humanitarian crises. However, even aggregated mobility traces can reveal private information about individual movements to potentially malicious actors. This paper develops and tests an approach for releasing private mobility data, which provides formal guarantees over the privacy of the underlying subjects. Specifically, we (1) introduce an algorithm for constructing differentially private mobility matrices, and derive privacy and accuracy bounds on this algorithm; (2) use real-world data from mobile phone operators in Afghanistan and Rwanda to show how this algorithm can enable the use of private mobility data in two high-stakes policy decisions: pandemic response and the distribution of humanitarian aid; and (3) discuss practical decisions that need to be made when implementing this approach, such as how to optimally balance privacy and accuracy. Taken together, these results can help enable the responsible use of private mobility data in humanitarian response.
As a unifying concept in economics, game theory, and operations research, even in the Robotics and AI field, the utility is used to evaluate the level of individual needs, preferences, and interests. Especially for decision-making and learning in multi-agent/robot systems (MAS/MRS), a suitable utility model can guide agents in choosing reasonable strategies to achieve their current needs and learning to cooperate and organize their behaviors, optimizing the system's utility, building stable and reliable relationships, and guaranteeing each group member's sustainable development, similar to the human society. Although these systems' complex, large-scale, and long-term behaviors are strongly determined by the fundamental characteristics of the underlying relationships, there has been less discussion on the theoretical aspects of mechanisms and the fields of applications in Robotics and AI. This paper introduces a utility-orient needs paradigm to describe and evaluate inter and outer relationships among agents' interactions. Then, we survey existing literature in relevant fields to support it and propose several promising research directions along with some open problems deemed necessary for further investigations.
The rise of Generative Artificial Intelligence systems (``AI systems'') has created unprecedented social engagement. AI code generation systems provide responses (output) to questions or requests by accessing the vast library of open-source code created by developers over decades. However, they do so by allegedly stealing the open-source code stored in virtual libraries, known as repositories. How all this happens and whether there is a solution short of years of litigation that can protect innovation is the focus of this article. We also peripherally touch upon the array of issues raised by the relationship between AI and copyright. Looking ahead, we propose the following: (a) immediate changes to the licenses for open-source code created by developers that will allow access and/or use of any open-source code to humans only; (b) we suggest revisions to the Massachusetts Institute of Technology (``MIT'') license so that AI systems procure appropriate licenses from open-source code developers, which we believe will harmonize standards and build social consensus for the benefit of all of humanity rather than profit-driven centers of innovation; (c) We call for urgent legislative action to protect the future of AI systems while also promoting innovation; and (d) we propose that there is a shift in the burden of proof to AI systems in obfuscation cases.
In applications such as end-to-end encrypted instant messaging, secure email, and device pairing, users need to compare key fingerprints to detect impersonation and adversary-in-the-middle attacks. Key fingerprints are usually computed as truncated hashes of each party's view of the channel keys, encoded as an alphanumeric or numeric string, and compared out-of-band, e.g. manually, to detect any inconsistencies. Previous work has extensively studied the usability of various verification strategies and encoding formats, however, the exact effect of key fingerprint length on the security and usability of key fingerprint verification has not been rigorously investigated. We present a 162-participant study on the effect of numeric key fingerprint length on comparison time and error rate. While the results confirm some widely-held intuitions such as general comparison times and errors increasing significantly with length, a closer look reveals interesting nuances. The significant rise in comparison time only occurs when highly similar fingerprints are compared, and comparison time remains relatively constant otherwise. On errors, our results clearly distinguish between security non-critical errors that remain low irrespective of length and security critical errors that significantly rise, especially at higher fingerprint lengths. A noteworthy implication of this latter result is that Signal/WhatsApp key fingerprints provide a considerably lower level of security than usually assumed.
Real-world software applications must constantly evolve to remain relevant. This evolution occurs when developing new applications or adapting existing ones to meet new requirements, make corrections, or incorporate future functionality. Traditional methods of software quality control involve software quality models and continuous code inspection tools. These measures focus on directly assessing the quality of the software. However, there is a strong correlation and causation between the quality of the development process and the resulting software product. Therefore, improving the development process indirectly improves the software product, too. To achieve this, effective learning from past processes is necessary, often embraced through post mortem organizational learning. While qualitative evaluation of large artifacts is common, smaller quantitative changes captured by application lifecycle management are often overlooked. In addition to software metrics, these smaller changes can reveal complex phenomena related to project culture and management. Leveraging these changes can help detect and address such complex issues. Software evolution was previously measured by the size of changes, but the lack of consensus on a reliable and versatile quantification method prevents its use as a dependable metric. Different size classifications fail to reliably describe the nature of evolution. While application lifecycle management data is rich, identifying which artifacts can model detrimental managerial practices remains uncertain. Approaches such as simulation modeling, discrete events simulation, or Bayesian networks have only limited ability to exploit continuous-time process models of such phenomena. Even worse, the accessibility and mechanistic insight into such gray- or black-box models are typically very low. To address these challenges, we suggest leveraging objectively [...]
Decision-making algorithms are being used in important decisions, such as who should be enrolled in health care programs and be hired. Even though these systems are currently deployed in high-stakes scenarios, many of them cannot explain their decisions. This limitation has prompted the Explainable Artificial Intelligence (XAI) initiative, which aims to make algorithms explainable to comply with legal requirements, promote trust, and maintain accountability. This paper questions whether and to what extent explainability can help solve the responsibility issues posed by autonomous AI systems. We suggest that XAI systems that provide post-hoc explanations could be seen as blameworthy agents, obscuring the responsibility of developers in the decision-making process. Furthermore, we argue that XAI could result in incorrect attributions of responsibility to vulnerable stakeholders, such as those who are subjected to algorithmic decisions (i.e., patients), due to a misguided perception that they have control over explainable algorithms. This conflict between explainability and accountability can be exacerbated if designers choose to use algorithms and patients as moral and legal scapegoats. We conclude with a set of recommendations for how to approach this tension in the socio-technical process of algorithmic decision-making and a defense of hard regulation to prevent designers from escaping responsibility.
Along with the massive growth of the Internet from the 1990s until now, various innovative technologies have been created to bring users breathtaking experiences with more virtual interactions in cyberspace. Many virtual environments with thousands of services and applications, from social networks to virtual gaming worlds, have been developed with immersive experience and digital transformation, but most are incoherent instead of being integrated into a platform. In this context, metaverse, a term formed by combining meta and universe, has been introduced as a shared virtual world that is fueled by many emerging technologies, such as fifth-generation networks and beyond, virtual reality, and artificial intelligence (AI). Among such technologies, AI has shown the great importance of processing big data to enhance immersive experience and enable human-like intelligence of virtual agents. In this survey, we make a beneficial effort to explore the role of AI in the foundation and development of the metaverse. We first deliver a preliminary of AI, including machine learning algorithms and deep learning architectures, and its role in the metaverse. We then convey a comprehensive investigation of AI-based methods concerning six technical aspects that have potentials for the metaverse: natural language processing, machine vision, blockchain, networking, digital twin, and neural interface, and being potential for the metaverse. Subsequently, several AI-aided applications, such as healthcare, manufacturing, smart cities, and gaming, are studied to be deployed in the virtual worlds. Finally, we conclude the key contribution of this survey and open some future research directions in AI for the metaverse.
Over the past few years, we have seen fundamental breakthroughs in core problems in machine learning, largely driven by advances in deep neural networks. At the same time, the amount of data collected in a wide array of scientific domains is dramatically increasing in both size and complexity. Taken together, this suggests many exciting opportunities for deep learning applications in scientific settings. But a significant challenge to this is simply knowing where to start. The sheer breadth and diversity of different deep learning techniques makes it difficult to determine what scientific problems might be most amenable to these methods, or which specific combination of methods might offer the most promising first approach. In this survey, we focus on addressing this central issue, providing an overview of many widely used deep learning models, spanning visual, sequential and graph structured data, associated tasks and different training methods, along with techniques to use deep learning with less data and better interpret these complex models --- two central considerations for many scientific use cases. We also include overviews of the full design process, implementation tips, and links to a plethora of tutorials, research summaries and open-sourced deep learning pipelines and pretrained models, developed by the community. We hope that this survey will help accelerate the use of deep learning across different scientific domains.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.