In applications such as end-to-end encrypted instant messaging, secure email, and device pairing, users need to compare key fingerprints to detect impersonation and adversary-in-the-middle attacks. Key fingerprints are usually computed as truncated hashes of each party's view of the channel keys, encoded as an alphanumeric or numeric string, and compared out-of-band, e.g. manually, to detect any inconsistencies. Previous work has extensively studied the usability of various verification strategies and encoding formats, however, the exact effect of key fingerprint length on the security and usability of key fingerprint verification has not been rigorously investigated. We present a 162-participant study on the effect of numeric key fingerprint length on comparison time and error rate. While the results confirm some widely-held intuitions such as general comparison times and errors increasing significantly with length, a closer look reveals interesting nuances. The significant rise in comparison time only occurs when highly similar fingerprints are compared, and comparison time remains relatively constant otherwise. On errors, our results clearly distinguish between security non-critical errors that remain low irrespective of length and security critical errors that significantly rise, especially at higher fingerprint lengths. A noteworthy implication of this latter result is that Signal/WhatsApp key fingerprints provide a considerably lower level of security than usually assumed.
Modern applications commonly need to manage dataset types composed of heterogeneous data and schemas, making it difficult to access them in an integrated way. A single data store to manage heterogeneous data using a common data model is not effective in such a scenario, which results in the domain data being fragmented in the data stores that best fit their storage and access requirements (e.g., NoSQL, relational DBMS, or HDFS). Besides, organization workflows independently consume these fragments, and usually, there is no explicit link among the fragments that would be useful to support an integrated view. The research challenge tackled by this work is to provide the means to query heterogeneous data residing on distinct data repositories that are not explicitly connected. We propose a federated database architecture by providing a single abstract global conceptual schema to users, allowing them to write their queries, encapsulating data heterogeneity, location, and linkage by employing: (i) meta-models to represent the global conceptual schema, the remote data local conceptual schemas, and mappings among them; (ii) provenance to create explicit links among the consumed and generated data residing in separate datasets. We evaluated the architecture through its implementation as a polystore service, following a microservice architecture approach, in a scenario that simulates a real case in Oil \& Gas industry. Also, we compared the proposed architecture to a relational multidatabase system based on foreign data wrappers, measuring the user's cognitive load to write a query (or query complexity) and the query processing time. The results demonstrated that the proposed architecture allows query writing two times less complex than the one written for the relational multidatabase system, adding an excess of no more than 30% in query processing time.
Convolutional networks are considered shift invariant, but it was demonstrated that their response may vary according to the exact location of the objects. In this paper we will demonstrate that most commonly investigated datasets have a bias, where objects are over-represented at the center of the image during training. This bias and the boundary condition of these networks can have a significant effect on the performance of these architectures and their accuracy drops significantly as an object approaches the boundary. We will also demonstrate how this effect can be mitigated with data augmentation techniques.
In many applications, piecewise continuous functions are commonly interpolated over meshes. However, accurate high-order manipulations of such functions can be challenging due to potential spurious oscillations known as the Gibbs phenomena. To address this challenge, we propose a novel approach, Robust Discontinuity Indicators (RDI), which can efficiently and reliably detect both C^{0} and C^{1} discontinuities for node-based and cell-averaged values. We present a detailed analysis focusing on its derivation and the dual-thresholding strategy. A key advantage of RDI is its ability to handle potential inaccuracies associated with detecting discontinuities on non-uniform meshes, thanks to its innovative discontinuity indicators. We also extend the applicability of RDI to handle general surfaces with boundaries, features, and ridge points, thereby enhancing its versatility and usefulness in various scenarios. To demonstrate the robustness of RDI, we conduct a series of experiments on non-uniform meshes and general surfaces, and compare its performance with some alternative methods. By addressing the challenges posed by the Gibbs phenomena and providing reliable detection of discontinuities, RDI opens up possibilities for improved approximation and analysis of piecewise continuous functions, such as in data remap.
Web 2.0 recommendation systems, such as Yelp, connect users and businesses so that users can identify new businesses and simultaneously express their experiences in the form of reviews. Yelp recommendation software moderates user-provided content by categorizing them into recommended and not-recommended sections. Due to Yelp's substantial popularity and its high impact on local businesses' success, understanding the fairness of its algorithms is crucial. However, with no access to the training data and the algorithms used by such black-box systems, studying their fairness is not trivial, requiring a tremendous effort to minimize bias in data collection and consider the confounding factors in the analysis. This large-scale data-driven study, for the first time, investigates Yelp's business ranking and review recommendation system through the lens of fairness. We define and examine 4 hypotheses to examine if Yelp's recommendation software shows bias and if Yelp's business ranking algorithm shows bias against restaurants located in specific neighborhoods. Our findings show that reviews of female and less-established users are disproportionately categorized as recommended. We also find a positive association between restaurants being located in hotspot regions and their average exposure. Furthermore, we observed some cases of severe disparity bias in cities where the hotspots are in neighborhoods with less demographic diversity or areas with higher affluence and education levels. Indeed, biases introduced by data-driven systems, including our findings in this paper, are (almost) always implicit and through proxy attributes. Still, the authors believe such implicit biases should be detected and resolved as those can create cycles of discrimination that keep increasing the social gaps between different groups even further.
Reinforcement Learning (RL) is being increasingly used to learn and adapt application behavior in many domains, including large-scale and safety critical systems, as for example, autonomous driving. With the advent of plug-n-play RL libraries, its applicability has further increased, enabling integration of RL algorithms by users. We note, however, that the majority of such code is not developed by RL engineers, which as a consequence, may lead to poor program quality yielding bugs, suboptimal performance, maintainability, and evolution problems for RL-based projects. In this paper we begin the exploration of this hypothesis, specific to code utilizing RL, analyzing different projects found in the wild, to assess their quality from a software engineering perspective. Our study includes 24 popular RL-based Python projects, analyzed with standard software engineering metrics. Our results, aligned with similar analyses for ML code in general, show that popular and widely reused RL repositories contain many code smells (3.95% of the code base on average), significantly affecting the projects' maintainability. The most common code smells detected are long method and long method chain, highlighting problems in the definition and interaction of agents. Detected code smells suggest problems in responsibility separation, and the appropriateness of current abstractions for the definition of RL algorithms.
Many conversational domains require the system to present nuanced information to users. Such systems must follow up what they say to address clarification questions and repair misunderstandings. In this work, we explore this interactive strategy in a referential communication task. Using simulation, we analyze the communication trade-offs between initial presentation and subsequent followup as a function of user clarification strategy, and compare the performance of several baseline strategies to policies derived by reinforcement learning. We find surprising advantages to coherence-based representations of dialogue strategy, which bring minimal data requirements, explainable choices, and strong audit capabilities, but incur little loss in predicted outcomes across a wide range of user models.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.
To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.
In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.