Modern applications commonly need to manage dataset types composed of heterogeneous data and schemas, making it difficult to access them in an integrated way. A single data store to manage heterogeneous data using a common data model is not effective in such a scenario, which results in the domain data being fragmented in the data stores that best fit their storage and access requirements (e.g., NoSQL, relational DBMS, or HDFS). Besides, organization workflows independently consume these fragments, and usually, there is no explicit link among the fragments that would be useful to support an integrated view. The research challenge tackled by this work is to provide the means to query heterogeneous data residing on distinct data repositories that are not explicitly connected. We propose a federated database architecture by providing a single abstract global conceptual schema to users, allowing them to write their queries, encapsulating data heterogeneity, location, and linkage by employing: (i) meta-models to represent the global conceptual schema, the remote data local conceptual schemas, and mappings among them; (ii) provenance to create explicit links among the consumed and generated data residing in separate datasets. We evaluated the architecture through its implementation as a polystore service, following a microservice architecture approach, in a scenario that simulates a real case in Oil \& Gas industry. Also, we compared the proposed architecture to a relational multidatabase system based on foreign data wrappers, measuring the user's cognitive load to write a query (or query complexity) and the query processing time. The results demonstrated that the proposed architecture allows query writing two times less complex than the one written for the relational multidatabase system, adding an excess of no more than 30% in query processing time.
With the advent of advanced multi-sensor fusion models, there has been a notable enhancement in the performance of perception tasks within in terms of autonomous driving. Despite these advancements, the challenges persist, particularly in the fusion of data from cameras and LiDAR sensors. A critial concern is the accurate alignment of data from these disparate sensors. Our observations indicate that the projected positions of LiDAR points often misalign on the corresponding image. Furthermore, fusion models appear to struggle in accurately segmenting these misaligned points. In this paper, we would like to address this problem carefully, with a specific focus on the nuScenes dataset and the SOTA of fusion models 2DPASS, and providing the possible solutions or potential improvements.
Dueling bandits are widely used to model preferential feedback prevalent in many applications such as recommendation systems and ranking. In this paper, we study the Borda regret minimization problem for dueling bandits, which aims to identify the item with the highest Borda score while minimizing the cumulative regret. We propose a rich class of generalized linear dueling bandit models, which cover many existing models. We first prove a regret lower bound of order $\Omega(d^{2/3} T^{2/3})$ for the Borda regret minimization problem, where $d$ is the dimension of contextual vectors and $T$ is the time horizon. To attain this lower bound, we propose an explore-then-commit type algorithm for the stochastic setting, which has a nearly matching regret upper bound $\tilde{O}(d^{2/3} T^{2/3})$. We also propose an EXP3-type algorithm for the adversarial linear setting, where the underlying model parameter can change at each round. Our algorithm achieves an $\tilde{O}(d^{2/3} T^{2/3})$ regret, which is also optimal. Empirical evaluations on both synthetic data and a simulated real-world environment are conducted to corroborate our theoretical analysis.
The proliferation and ubiquity of temporal data across many disciplines has sparked interest for similarity, classification and clustering methods specifically designed to handle time series data. A core issue when dealing with time series is determining their pairwise similarity, i.e., the degree to which a given time series resembles another. Traditional distance measures such as the Euclidean are not well-suited due to the time-dependent nature of the data. Elastic metrics such as dynamic time warping (DTW) offer a promising approach, but are limited by their computational complexity, non-differentiability and sensitivity to noise and outliers. This thesis proposes novel elastic alignment methods that use parametric \& diffeomorphic warping transformations as a means of overcoming the shortcomings of DTW-based metrics. The proposed method is differentiable \& invertible, well-suited for deep learning architectures, robust to noise and outliers, computationally efficient, and is expressive and flexible enough to capture complex patterns. Furthermore, a closed-form solution was developed for the gradient of these diffeomorphic transformations, which allows an efficient search in the parameter space, leading to better solutions at convergence. Leveraging the benefits of these closed-form diffeomorphic transformations, this thesis proposes a suite of advancements that include: (a) an enhanced temporal transformer network for time series alignment and averaging, (b) a deep-learning based time series classification model to simultaneously align and classify signals with high accuracy, (c) an incremental time series clustering algorithm that is warping-invariant, scalable and can operate under limited computational and time resources, and finally, (d) a normalizing flow model that enhances the flexibility of affine transformations in coupling and autoregressive layers.
Searchable encryption (SE) is a positive way to protect users sensitive data in cloud computing setting, while preserving search ability on the server side, i.e., it allows the server to search encrypted data without leaking information about the plaintext data. In this paper, a multi-client universal circuit-based full-blind quantum computation (FBQC) model is proposed. In order to meet the requirements of multi-client accessing or computing encrypted cloud data, all clients with limited quantum ability outsource the key generation to a trusted key center and upload their encrypted data to the data center. Considering the feasibility of physical implementation, all quantum gates in the circuit are replaced with the combination of {\pi}/8 rotation operator set {Rz({\pi}/4), Ry({\pi}/4), CRz({\pi}/4), CRy({\pi}/4), CCRz({\pi}/4), CCRy({\pi}/4)}. In addition, the data center is only allowed to perform one {\pi}/8 rotation operator each time, but does not know the structure of the circuit (i.e., quantum computation), so it can guarantee the blindness of computation. Then, through combining this multi-client FBQC model and Grover searching algorithm, we continue to propose a quantum searchable encryption scheme for cloud data. It solves the problem of multi-client access mode under searchable encryption in the cloud environment, and has the ability to resist against some quantum attacks. To better demonstrate our scheme, an example of our scheme to search on encrypted 2-qubit state is given in detail. Furthermore, the security of our scheme is analysed from two aspects: external attacks and internal attacks, and the result indicates that it can resist against such kinds of attacks and also guarantee the blindness of data and computation.
Ordered sequences of data, specified with a join operation to combine sequences, serve as a foundation for the implementation of parallel functional algorithms. This abstract data type can be elegantly and efficiently implemented using balanced binary trees, where a join operation is provided to combine two trees and rebalance as necessary. In this work, we present a verified implementation and cost analysis of joinable red-black trees in $\textbf{calf}$, a dependent type theory for cost analysis. We implement red-black trees and auxiliary intermediate data structures in such a way that all correctness invariants are intrinsically maintained. Then, we describe and verify precise cost bounds on the operations, making use of the red-black tree invariants. Finally, we implement standard algorithms on sequences using the simple join-based signature and bound their cost in the case that red-black trees are used as the underlying implementation. All proofs are formally mechanized using the embedding of $\textbf{calf}$ in the Agda theorem prover.
The proper design of automated market makers (AMMs) is crucial to enable the continuous trading of assets represented as digital tokens on markets of cryptoeconomic systems. Improperly designed AMMs can make such markets suffer from the thin market problem (TMP), which can cause cryptoeconomic systems to fail their purposes. We developed an AMM taxonomy that showcases AMM design characteristics. Based on the AMM taxonomy, we devised AMM archetypes implementing principal solution approaches for the TMP. The main purpose of this article is to support practitioners and researchers in tackling the TMP through proper AMM designs.
Graphs are important data representations for describing objects and their relationships, which appear in a wide diversity of real-world scenarios. As one of a critical problem in this area, graph generation considers learning the distributions of given graphs and generating more novel graphs. Owing to their wide range of applications, generative models for graphs, which have a rich history, however, are traditionally hand-crafted and only capable of modeling a few statistical properties of graphs. Recent advances in deep generative models for graph generation is an important step towards improving the fidelity of generated graphs and paves the way for new kinds of applications. This article provides an extensive overview of the literature in the field of deep generative models for graph generation. Firstly, the formal definition of deep generative models for the graph generation and the preliminary knowledge are provided. Secondly, taxonomies of deep generative models for both unconditional and conditional graph generation are proposed respectively; the existing works of each are compared and analyzed. After that, an overview of the evaluation metrics in this specific domain is provided. Finally, the applications that deep graph generation enables are summarized and five promising future research directions are highlighted.
Causality can be described in terms of a structural causal model (SCM) that carries information on the variables of interest and their mechanistic relations. For most processes of interest the underlying SCM will only be partially observable, thus causal inference tries to leverage any exposed information. Graph neural networks (GNN) as universal approximators on structured input pose a viable candidate for causal learning, suggesting a tighter integration with SCM. To this effect we present a theoretical analysis from first principles that establishes a novel connection between GNN and SCM while providing an extended view on general neural-causal models. We then establish a new model class for GNN-based causal inference that is necessary and sufficient for causal effect identification. Our empirical illustration on simulations and standard benchmarks validate our theoretical proofs.
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.