亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated learning (FL) enables multiple clients to collaboratively train a global model without disclosing their data. Previous researches often require training the complete model parameters. However, the emergence of powerful pre-trained models makes it possible to achieve higher performance with fewer learnable parameters in FL. In this paper, we propose a federated adaptive prompt tuning algorithm, FedAPT, for multi-domain collaborative image classification with powerful foundation models, like CLIP. Compared with direct federated prompt tuning, our core idea is to adaptively unlock specific domain knowledge for each test sample in order to provide them with personalized prompts. To implement this idea, we design an adaptive prompt tuning module, which consists of a meta prompt, an adaptive network, and some keys. The server randomly generates a set of keys and assigns a unique key to each client. Then all clients cooperatively train the global adaptive network and meta prompt with the local datasets and the frozen keys. Ultimately, the global aggregation model can assign a personalized prompt to CLIP based on the domain features of each test sample. We perform extensive experiments on two multi-domain image classification datasets across two different settings -- supervised and unsupervised. The results show that FedAPT can achieve better performance with less than 10\% of the number of parameters of the fully trained model, and the global model can perform well in diverse client domains simultaneously.

相關內容

Class-incremental learning (CIL) aims to train classifiers that learn new classes without forgetting old ones. Most CIL methods focus on balanced data distribution for each task, overlooking real-world long-tailed distributions. Therefore, Long-Tailed Class-Incremental Learning (LT-CIL) has been introduced, which trains on data where head classes have more samples than tail classes. Existing methods mainly focus on preserving representative samples from previous classes to combat catastrophic forgetting. Recently, dynamic network algorithms frozen old network structures and expanded new ones, achieving significant performance. However, with the introduction of the long-tail problem, merely extending task-specific parameters can lead to miscalibrated predictions, while expanding the entire model results in an explosion of memory size. To address these issues, we introduce a novel Task-aware Expandable (TaE) framework, dynamically allocating and updating task-specific trainable parameters to learn diverse representations from each incremental task, while resisting forgetting through the majority of frozen model parameters. To further encourage the class-specific feature representation, we develop a Centroid-Enhanced (CEd) method to guide the update of these task-aware parameters. This approach is designed to adaptively minimize the distances between intra-class features while simultaneously maximizing the distances between inter-class features across all seen classes. The utility of this centroid-enhanced method extends to all "training from scratch" CIL algorithms. Extensive experiments were conducted on CIFAR-100 and ImageNet100 under different settings, which demonstrates that TaE achieves state-of-the-art performance.

Federated learning (FL) has been widely adopted for collaborative training on decentralized data. However, it faces the challenges of data, system, and model heterogeneity. This has inspired the emergence of model-heterogeneous personalized federated learning (MHPFL). Nevertheless, the problem of ensuring data and model privacy, while achieving good model performance and keeping communication and computation costs low remains open in MHPFL. To address this problem, we propose a model-heterogeneous personalized Federated learning with Mixture of Experts (pFedMoE) method. It assigns a shared homogeneous small feature extractor and a local gating network for each client's local heterogeneous large model. Firstly, during local training, the local heterogeneous model's feature extractor acts as a local expert for personalized feature (representation) extraction, while the shared homogeneous small feature extractor serves as a global expert for generalized feature extraction. The local gating network produces personalized weights for extracted representations from both experts on each data sample. The three models form a local heterogeneous MoE. The weighted mixed representation fuses generalized and personalized features and is processed by the local heterogeneous large model's header with personalized prediction information. The MoE and prediction header are updated simultaneously. Secondly, the trained local homogeneous small feature extractors are sent to the server for cross-client information fusion via aggregation. Overall, pFedMoE enhances local model personalization at a fine-grained data level, while supporting model heterogeneity.

Federated learning (FL) enables multiple data owners (a.k.a. FL clients) to collaboratively train machine learning models without disclosing sensitive private data. Existing FL research mostly focuses on the monopoly scenario in which a single FL server selects a subset of FL clients to update their local models in each round of training. In practice, there can be multiple FL servers simultaneously trying to select clients from the same pool. In this paper, we propose a first-of-its-kind Fairness-aware Federated Job Scheduling (FairFedJS) approach to bridge this gap. Based on Lyapunov optimization, it ensures fair allocation of high-demand FL client datasets to FL jobs in need of them, by jointly considering the current demand and the job payment bids, in order to prevent prolonged waiting. Extensive experiments comparing FairFedJS against four state-of-the-art approaches on two datasets demonstrate its significant advantages. It outperforms the best baseline by 31.9% and 1.0% on average in terms of scheduling fairness and convergence time, respectively, while achieving comparable test accuracy.

Deep reinforcement learning (DRL) has shown remarkable success in complex autonomous driving scenarios. However, DRL models inevitably bring high memory consumption and computation, which hinders their wide deployment in resource-limited autonomous driving devices. Structured Pruning has been recognized as a useful method to compress and accelerate DRL models, but it is still challenging to estimate the contribution of a parameter (i.e., neuron) to DRL models. In this paper, we introduce a novel dynamic structured pruning approach that gradually removes a DRL model's unimportant neurons during the training stage. Our method consists of two steps, i.e. training DRL models with a group sparse regularizer and removing unimportant neurons with a dynamic pruning threshold. To efficiently train the DRL model with a small number of important neurons, we employ a neuron-importance group sparse regularizer. In contrast to conventional regularizers, this regularizer imposes a penalty on redundant groups of neurons that do not significantly influence the output of the DRL model. Furthermore, we design a novel structured pruning strategy to dynamically determine the pruning threshold and gradually remove unimportant neurons with a binary mask. Therefore, our method can remove not only redundant groups of neurons of the DRL model but also achieve high and robust performance. Experimental results show that the proposed method is competitive with existing DRL pruning methods on discrete control environments (i.e., CartPole-v1 and LunarLander-v2) and MuJoCo continuous environments (i.e., Hopper-v3 and Walker2D-v3). Specifically, our method effectively compresses $93\%$ neurons and $96\%$ weights of the DRL model in four challenging DRL environments with slight accuracy degradation.

The burgeoning fields of robot learning and embodied AI have triggered an increasing demand for large quantities of data. However, collecting sufficient unbiased data from the target domain remains a challenge due to costly data collection processes and stringent safety requirements. Consequently, researchers often resort to data from easily accessible source domains, such as simulation and laboratory environments, for cost-effective data acquisition and rapid model iteration. Nevertheless, the environments and embodiments of these source domains can be quite different from their target domain counterparts, underscoring the need for effective cross-domain policy transfer approaches. In this paper, we conduct a systematic review of existing cross-domain policy transfer methods. Through a nuanced categorization of domain gaps, we encapsulate the overarching insights and design considerations of each problem setting. We also provide a high-level discussion about the key methodologies used in cross-domain policy transfer problems. Lastly, we summarize the open challenges that lie beyond the capabilities of current paradigms and discuss potential future directions in this field.

Multiple instance learning (MIL) is a powerful tool to solve the weakly supervised classification in whole slide image (WSI) based pathology diagnosis. However, the current MIL methods are usually based on independent and identical distribution hypothesis, thus neglect the correlation among different instances. To address this problem, we proposed a new framework, called correlated MIL, and provided a proof for convergence. Based on this framework, we devised a Transformer based MIL (TransMIL), which explored both morphological and spatial information. The proposed TransMIL can effectively deal with unbalanced/balanced and binary/multiple classification with great visualization and interpretability. We conducted various experiments for three different computational pathology problems and achieved better performance and faster convergence compared with state-of-the-art methods. The test AUC for the binary tumor classification can be up to 93.09% over CAMELYON16 dataset. And the AUC over the cancer subtypes classification can be up to 96.03% and 98.82% over TCGA-NSCLC dataset and TCGA-RCC dataset, respectively.

Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.

Recently, deep multiagent reinforcement learning (MARL) has become a highly active research area as many real-world problems can be inherently viewed as multiagent systems. A particularly interesting and widely applicable class of problems is the partially observable cooperative multiagent setting, in which a team of agents learns to coordinate their behaviors conditioning on their private observations and commonly shared global reward signals. One natural solution is to resort to the centralized training and decentralized execution paradigm. During centralized training, one key challenge is the multiagent credit assignment: how to allocate the global rewards for individual agent policies for better coordination towards maximizing system-level's benefits. In this paper, we propose a new method called Q-value Path Decomposition (QPD) to decompose the system's global Q-values into individual agents' Q-values. Unlike previous works which restrict the representation relation of the individual Q-values and the global one, we leverage the integrated gradient attribution technique into deep MARL to directly decompose global Q-values along trajectory paths to assign credits for agents. We evaluate QPD on the challenging StarCraft II micromanagement tasks and show that QPD achieves the state-of-the-art performance in both homogeneous and heterogeneous multiagent scenarios compared with existing cooperative MARL algorithms.

Recently, ensemble has been applied to deep metric learning to yield state-of-the-art results. Deep metric learning aims to learn deep neural networks for feature embeddings, distances of which satisfy given constraint. In deep metric learning, ensemble takes average of distances learned by multiple learners. As one important aspect of ensemble, the learners should be diverse in their feature embeddings. To this end, we propose an attention-based ensemble, which uses multiple attention masks, so that each learner can attend to different parts of the object. We also propose a divergence loss, which encourages diversity among the learners. The proposed method is applied to the standard benchmarks of deep metric learning and experimental results show that it outperforms the state-of-the-art methods by a significant margin on image retrieval tasks.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司