亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Automata networks, and in particular Boolean networks, are used to model diverse networks of interacting entities. The interaction graph of an automata network is its most important parameter, as it represents the overall architecture of the network. A continuous amount of work has been devoted to infer dynamical properties of the automata network based on its interaction graph only. Robert's theorem is the seminal result in this area; it states that automata networks with an acyclic interaction graph converge to a unique fixed point. The feedback bound can be viewed as an extension of Robert's theorem; it gives an upper bound on the number of fixed points of an automata network based on the size of a minimum feedback vertex set of its interaction graph. Boolean networks can be viewed as self-mappings on the power set lattice of the set of entities. In this paper, we consider self-mappings on a general complete lattice. We make two conceptual contributions. Firstly, we can view a digraph as a residuated mapping on the power set lattice; as such, we define a graph on a complete lattice as a residuated mapping on that lattice. We extend and generalise some results on digraphs to our setting. Secondly, we introduce a generalised notion of dependency whereby any mapping $\phi$ can depend on any other mapping $\alpha$. In fact, we are able to give four kinds of dependency in this case. We can then vastly expand Robert's theorem to self-mappings on general complete lattices; we similarly generalise the feedback bound. We then obtain stronger results in the case where the lattice is a complete Boolean algebra. We finally show how our results can be applied to prove the convergence of automata networks.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · · 相互獨立的 · MoDELS · CASES ·
2023 年 11 月 3 日

We consider the community recovery problem on a multilayer variant of the hypergraph stochastic block model (HSBM). Each layer is associated with an independent realization of a d-uniform HSBM on N vertices. Given the similarity matrix containing the aggregated number of hyperedges incident to each pair of vertices, the goal is to obtain a partition of the N vertices into disjoint communities. In this work, we investigate a semidefinite programming (SDP) approach and obtain information-theoretic conditions on the model parameters that guarantee exact recovery both in the assortative and the disassortative cases.

Quantum computing has recently emerged as a transformative technology. Yet, its promised advantages rely on efficiently translating quantum operations into viable physical realizations. In this work, we use generative machine learning models, specifically denoising diffusion models (DMs), to facilitate this transformation. Leveraging text-conditioning, we steer the model to produce desired quantum operations within gate-based quantum circuits. Notably, DMs allow to sidestep during training the exponential overhead inherent in the classical simulation of quantum dynamics -- a consistent bottleneck in preceding ML techniques. We demonstrate the model's capabilities across two tasks: entanglement generation and unitary compilation. The model excels at generating new circuits and supports typical DM extensions such as masking and editing to, for instance, align the circuit generation to the constraints of the targeted quantum device. Given their flexibility and generalization abilities, we envision DMs as pivotal in quantum circuit synthesis, enhancing both practical applications but also insights into theoretical quantum computation.

In theory, the choice of ReLU(0) in [0, 1] for a neural network has a negligible influence both on backpropagation and training. Yet, in the real world, 32 bits default precision combined with the size of deep learning problems makes it a hyperparameter of training methods. We investigate the importance of the value of ReLU'(0) for several precision levels (16, 32, 64 bits), on various networks (fully connected, VGG, ResNet) and datasets (MNIST, CIFAR10, SVHN, ImageNet). We observe considerable variations of backpropagation outputs which occur around half of the time in 32 bits precision. The effect disappears with double precision, while it is systematic at 16 bits. For vanilla SGD training, the choice ReLU'(0) = 0 seems to be the most efficient. For our experiments on ImageNet the gain in test accuracy over ReLU'(0) = 1 was more than 10 points (two runs). We also evidence that reconditioning approaches as batch-norm or ADAM tend to buffer the influence of ReLU'(0)'s value. Overall, the message we convey is that algorithmic differentiation of nonsmooth problems potentially hides parameters that could be tuned advantageously.

We establish conditions under which latent causal graphs are nonparametrically identifiable and can be reconstructed from unknown interventions in the latent space. Our primary focus is the identification of the latent structure in measurement models without parametric assumptions such as linearity or Gaussianity. Moreover, we do not assume the number of hidden variables is known, and we show that at most one unknown intervention per hidden variable is needed. This extends a recent line of work on learning causal representations from observations and interventions. The proofs are constructive and introduce two new graphical concepts -- imaginary subsets and isolated edges -- that may be useful in their own right. As a matter of independent interest, the proofs also involve a novel characterization of the limits of edge orientations within the equivalence class of DAGs induced by unknown interventions. These are the first results to characterize the conditions under which causal representations are identifiable without making any parametric assumptions in a general setting with unknown interventions and without faithfulness.

In prediction settings where data are collected over time, it is often of interest to understand both the importance of variables for predicting the response at each time point and the importance summarized over the time series. Building on recent advances in estimation and inference for variable importance measures, we define summaries of variable importance trajectories. These measures can be estimated and the same approaches for inference can be applied regardless of the choice of the algorithm(s) used to estimate the prediction function. We propose a nonparametric efficient estimation and inference procedure as well as a null hypothesis testing procedure that are valid even when complex machine learning tools are used for prediction. Through simulations, we demonstrate that our proposed procedures have good operating characteristics, and we illustrate their use by investigating the longitudinal importance of risk factors for suicide attempt.

To improve the predictability of complex computational models in the experimentally-unknown domains, we propose a Bayesian statistical machine learning framework utilizing the Dirichlet distribution that combines results of several imperfect models. This framework can be viewed as an extension of Bayesian stacking. To illustrate the method, we study the ability of Bayesian model averaging and mixing techniques to mine nuclear masses. We show that the global and local mixtures of models reach excellent performance on both prediction accuracy and uncertainty quantification and are preferable to classical Bayesian model averaging. Additionally, our statistical analysis indicates that improving model predictions through mixing rather than mixing of corrected models leads to more robust extrapolations.

Suppose we want to construct some structure on a bounded-degree graph, e.g., an almost maximum matching, and we want to decide about each edge depending only on its constant-radius neighborhood. We examine and compare the strengths of different extensions of these local algorithms. A common extension is to use preprocessing, which means that we can make some calculation about the whole graph, and each local decision can also depend on this calculation. In this paper, we show that preprocessing is needless: if a nearly optimal local algorithm uses preprocessing, then the same can be achieved by a local algorithm without preprocessing, but with a global randomization.

Generalized linear models (GLMs) are routinely used for modeling relationships between a response variable and a set of covariates. The simple form of a GLM comes with easy interpretability, but also leads to concerns about model misspecification impacting inferential conclusions. A popular semi-parametric solution adopted in the frequentist literature is quasi-likelihood, which improves robustness by only requiring correct specification of the first two moments. We develop a robust approach to Bayesian inference in GLMs through quasi-posterior distributions. We show that quasi-posteriors provide a coherent generalized Bayes inference method, while also approximating so-called coarsened posteriors. In so doing, we obtain new insights into the choice of coarsening parameter. Asymptotically, the quasi-posterior converges in total variation to a normal distribution and has important connections with the loss-likelihood bootstrap posterior. We demonstrate that it is also well-calibrated in terms of frequentist coverage. Moreover, the loss-scale parameter has a clear interpretation as a dispersion, and this leads to a consolidated method of moments estimator.

Weights are geometrical degrees of freedom that allow to generalise Lagrangian finite elements. They are defined through integrals over specific supports, well understood in terms of differential forms and integration, and lie within the framework of finite element exterior calculus. In this work we exploit this formalism with the target of identifying supports that are appealing for finite element approximation. To do so, we study the related parametric matrix-sequences, with the matrix order tending to infinity as the mesh size tends to zero. We describe the conditioning and the spectral global behavior in terms of the standard Toeplitz machinery and GLT theory, leading to the identification of the optimal choices for weights. Moreover, we propose and test ad hoc preconditioners, in dependence of the discretization parameters and in connection with conjugate gradient method. The model problem we consider is a onedimensional Laplacian, both with constant and non constant coefficients. Numerical visualizations and experimental tests are reported and critically discussed, demonstrating the advantages of weights-induced bases over standard Lagrangian ones. Open problems and future steps are listed in the conclusive section, especially regarding the multidimensional case.

Knowledge graphs (KGs) of real-world facts about entities and their relationships are useful resources for a variety of natural language processing tasks. However, because knowledge graphs are typically incomplete, it is useful to perform knowledge graph completion or link prediction, i.e. predict whether a relationship not in the knowledge graph is likely to be true. This paper serves as a comprehensive survey of embedding models of entities and relationships for knowledge graph completion, summarizing up-to-date experimental results on standard benchmark datasets and pointing out potential future research directions.

北京阿比特科技有限公司