亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent advances in deep generative models have greatly expanded the potential to create realistic synthetic health datasets. These synthetic datasets aim to preserve the characteristics, patterns, and overall scientific conclusions derived from sensitive health datasets without disclosing patient identity or sensitive information. Thus, synthetic data can facilitate safe data sharing that supports a range of initiatives including the development of new predictive models, advanced health IT platforms, and general project ideation and hypothesis development. However, many questions and challenges remain, including how to consistently evaluate a synthetic dataset's similarity and predictive utility in comparison to the original real dataset and risk to privacy when shared. Additional regulatory and governance issues have not been widely addressed. In this primer, we map the state of synthetic health data, including generation and evaluation methods and tools, existing examples of deployment, the regulatory and ethical landscape, access and governance options, and opportunities for further development.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Deep Learning models have been successfully utilized to extract clinically actionable insights from routinely available histology data. Generally, these models require annotations performed by clinicians, which are scarce and costly to generate. The emergence of self-supervised learning (SSL) methods remove this barrier, allowing for large-scale analyses on non-annotated data. However, recent SSL approaches apply increasingly expansive model architectures and larger datasets, causing the rapid escalation of data volumes, hardware prerequisites, and overall expenses, limiting access to these resources to few institutions. Therefore, we investigated the complexity of contrastive SSL in computational pathology in relation to classification performance with the utilization of consumer-grade hardware. Specifically, we analyzed the effects of adaptations in data volume, architecture, and algorithms on downstream classification tasks, emphasizing their impact on computational resources. We trained breast cancer foundation models on a large public patient cohort and validated them on various downstream classification tasks in a weakly supervised manner on two external public patient cohorts. Our experiments demonstrate that we can improve downstream classification performance whilst reducing SSL training duration by 90%. In summary, we propose a set of adaptations which enable the utilization of SSL in computational pathology in non-resource abundant environments.

Signed graphs are an emergent way of representing data in a variety of contexts were conflicting interactions exist. These include data from biological, ecological, and social systems. Here we propose the concept of communicability geometry for signed graphs, proving that metrics in this space, such as the communicability distance and angles, are Euclidean and spherical. We then apply these metrics to solve several problems in data analysis of signed graphs in a unified way. They include the partitioning of signed graphs, dimensionality reduction, finding hierarchies of alliances in signed networks as well as the quantification of the degree of polarization between the existing factions in systems represented by this type of graphs.

In mobile health, tailoring interventions for real-time delivery is of paramount importance. Micro-randomized trials have emerged as the "gold-standard" methodology for developing such interventions. Analyzing data from these trials provides insights into the efficacy of interventions and the potential moderation by specific covariates. The "causal excursion effect", a novel class of causal estimand, addresses these inquiries. Yet, existing research mainly focuses on continuous or binary data, leaving count data largely unexplored. The current work is motivated by the Drink Less micro-randomized trial from the UK, which focuses on a zero-inflated proximal outcome, i.e., the number of screen views in the subsequent hour following the intervention decision point. To be specific, we revisit the concept of causal excursion effect, specifically for zero-inflated count outcomes, and introduce novel estimation approaches that incorporate nonparametric techniques. Bidirectional asymptotics are established for the proposed estimators. Simulation studies are conducted to evaluate the performance of the proposed methods. As an illustration, we also implement these methods to the Drink Less trial data.

Some theories on data flow security are based on order-theoretical concepts, most commonly on lattice concepts. This paper presents a correspondence between security concepts and partial order concepts, by which the former become an application of the latter. The formalization involves concepts of data flow, equivalence classes of entities that can access the same data, and labels. Efficient, well-known algorithms to obtain one of these from one of the others are presented. Security concepts such as secrecy (also called confidentiality), integrity and conflict can be expressed in this theory. Further, it is shown that complex tuple labels used in the literature to express security levels can be translated into equivalent set labels. A consequence is that any network's data flow or access control relationships can be defined by assigning simple set labels to the entities. Finally, it is shown how several partial orders can be combined when different data flows must coexist.

To simplify the analysis of Boolean networks, a reduction in the number of components is often considered. A popular reduction method consists in eliminating components that are not autoregulated, using variable substitution. In this work, we show how this method can be extended, for asynchronous dynamics of Boolean networks, to the elimination of vertices that have a negative autoregulation, and study the effects on the dynamics and interaction structure. For elimination of non-autoregulated variables, the preservation of attractors is in general guaranteed only for fixed points. Here we give sufficient conditions for the preservation of complex attractors. The removal of so called mediator nodes (i.e. vertices with indegree and outdegree one) is often considered, and frequently does not affect the attractor landscape. We clarify that this is not always the case, and in some situations even subtle changes in the interaction structure can lead to a different asymptotic behaviour. Finally, we use properties of the more general elimination method introduced here to give an alternative proof for a bound on the number of attractors of asynchronous Boolean networks in terms of the cardinality of positive feedback vertex sets of the interaction graph.

Charts, figures, and text derived from data play an important role in decision making, from data-driven policy development to day-to-day choices informed by online articles. Making sense of, or fact-checking, outputs means understanding how they relate to the underlying data. Even for domain experts with access to the source code and data sets, this poses a significant challenge. In this paper we introduce a new program analysis framework which supports interactive exploration of fine-grained I/O relationships directly through computed outputs, making use of dynamic dependence graphs. Our main contribution is a novel notion in data provenance which we call related inputs, a relation of mutual relevance or "cognacy" which arises between inputs when they contribute to common features of the output. Queries of this form allow readers to ask questions like "What outputs use this data element, and what other data elements are used along with it?". We show how Jonsson and Tarski's concept of conjugate operators on Boolean algebras appropriately characterises the notion of cognacy in a dependence graph, and give a procedure for computing related inputs over such a graph.

Important advances in pillar domains are derived from exploiting query-logs which represents users interest and preferences. Deep understanding of users provides useful knowledge which can influence strongly decision-making. In this work, we want to extract valuable information from Linked Open Data (LOD) query-logs. LOD logs have experienced significant growth due to the large exploitation of LOD datasets. However, exploiting these logs is a difficult task because of their complex structure. Moreover, these logs suffer from many risks related to their Quality and Provenance, impacting their trust. To tackle these issues, we start by clearly defining the ecosystem of LOD query-logs. Then, we provide an end-to-end solution to exploit these logs. At the end, real LOD logs are used and a set of experiments are conducted to validate the proposed solution.

Network diffusion models are used to study things like disease transmission, information spread, and technology adoption. However, small amounts of mismeasurement are extremely likely in the networks constructed to operationalize these models. We show that estimates of diffusions are highly non-robust to this measurement error. First, we show that even when measurement error is vanishingly small, such that the share of missed links is close to zero, forecasts about the extent of diffusion will greatly underestimate the truth. Second, a small mismeasurement in the identity of the initial seed generates a large shift in the locations of expected diffusion path. We show that both of these results still hold when the vanishing measurement error is only local in nature. Such non-robustness in forecasting exists even under conditions where the basic reproductive number is consistently estimable. Possible solutions, such as estimating the measurement error or implementing widespread detection efforts, still face difficulties because the number of missed links are so small. Finally, we conduct Monte Carlo simulations on simulated networks, and real networks from three settings: travel data from the COVID-19 pandemic in the western US, a mobile phone marketing campaign in rural India, and in an insurance experiment in China.

Existing survival models either do not scale to high dimensional and multi-modal data or are difficult to interpret. In this study, we present a supervised topic model called MixEHR-SurG to simultaneously integrate heterogeneous EHR data and model survival hazard. Our contributions are three-folds: (1) integrating EHR topic inference with Cox proportional hazards likelihood; (2) integrating patient-specific topic hyperparameters using the PheCode concepts such that each topic can be identified with exactly one PheCode-associated phenotype; (3) multi-modal survival topic inference. This leads to a highly interpretable survival topic model that can infer PheCode-specific phenotype topics associated with patient mortality. We evaluated MixEHR-SurG using a simulated dataset and two real-world EHR datasets: the Quebec Congenital Heart Disease (CHD) data consisting of 8,211 subjects with 75,187 outpatient claim records of 1,767 unique ICD codes; the MIMIC-III consisting of 1,458 subjects with multi-modal EHR records. Compared to the baselines, MixEHR-SurG achieved a superior dynamic AUROC for mortality prediction, with a mean AUROC score of 0.89 in the simulation dataset and a mean AUROC of 0.645 on the CHD dataset. Qualitatively, MixEHR-SurG associates severe cardiac conditions with high mortality risk among the CHD patients after the first heart failure hospitalization and critical brain injuries with increased mortality among the MIMIC- III patients after their ICU discharge. Together, the integration of the Cox proportional hazards model and EHR topic inference in MixEHR-SurG not only leads to competitive mortality prediction but also meaningful phenotype topics for in-depth survival analysis. The software is available at GitHub: //github.com/li-lab-mcgill/MixEHR-SurG.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司