亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this study, we employ a classification approach to show that different categories of literary "quality" display unique linguistic profiles, leveraging a corpus that encompasses titles from the Norton Anthology, Penguin Classics series, and the Open Syllabus project, contrasted against contemporary bestsellers, Nobel prize winners and recipients of prestigious literary awards. Our analysis reveals that canonical and so called high-brow texts exhibit distinct textual features when compared to other quality categories such as bestsellers and popular titles as well as to control groups, likely responding to distinct (but not mutually exclusive) models of quality. We apply a classic machine learning approach, namely Random Forest, to distinguish quality novels from "control groups", achieving up to 77\% F1 scores in differentiating between the categories. We find that quality category tend to be easier to distinguish from control groups than from other quality categories, suggesting than literary quality features might be distinguishable but shared through quality proxies.

相關內容

We introduce a new tool, Transductive Local Complexity (TLC), designed to analyze the generalization performance of transductive learning methods and inspire the development of new algorithms in this domain. Our work extends the concept of the popular Local Rademacher Complexity (LRC) to the transductive setting, incorporating significant and novel modifications compared to the typical analysis of LRC methods in the inductive setting. While LRC has been widely used as a powerful tool for analyzing inductive models, providing sharp generalization bounds for classification and minimax rates for nonparametric regression, it remains an open question whether a localized Rademacher complexity-based tool can be developed for transductive learning. Our goal is to achieve sharp bounds for transductive learning that align with the inductive excess risk bounds established by LRC. We provide a definitive answer to this open problem with the introduction of TLC. We construct TLC by first establishing a novel and sharp concentration inequality for the supremum of a test-train empirical processes. Using a peeling strategy and a new surrogate variance operator, we derive the a novel excess risk bound in the transductive setting which is consistent with the classical LRC-based excess risk bound in the inductive setting. As an application of TLC, we employ this new tool to analyze the Transductive Kernel Learning (TKL) model, deriving sharper excess risk bounds than those provided by the current state-of-the-art under the same assumptions. Additionally, the concentration inequality for the test-train process is employed to derive a sharp concentration inequality for the general supremum of empirical processes involving random variables in the setting of uniform sampling without replacement. The sharpness of our derived bound is compared to existing concentration inequalities under the same conditions.

We study whether transformers can learn to implicitly reason over parametric knowledge, a skill that even the most capable language models struggle with. Focusing on two representative reasoning types, composition and comparison, we consistently find that transformers can learn implicit reasoning, but only through grokking, i.e., extended training far beyond overfitting. The levels of generalization also vary across reasoning types: when faced with out-of-distribution examples, transformers fail to systematically generalize for composition but succeed for comparison. We delve into the model's internals throughout training, conducting analytical experiments that reveal: 1) the mechanism behind grokking, such as the formation of the generalizing circuit and its relation to the relative efficiency of generalizing and memorizing circuits, and 2) the connection between systematicity and the configuration of the generalizing circuit. Our findings guide data and training setup to better induce implicit reasoning and suggest potential improvements to the transformer architecture, such as encouraging cross-layer knowledge sharing. Furthermore, we demonstrate that for a challenging reasoning task with a large search space, GPT-4-Turbo and Gemini-1.5-Pro based on non-parametric memory fail badly regardless of prompting styles or retrieval augmentation, while a fully grokked transformer can achieve near-perfect accuracy, showcasing the power of parametric memory for complex reasoning.

This paper introduces PipeFusion, a novel approach that harnesses multi-GPU parallelism to address the high computational and latency challenges of generating high-resolution images with diffusion transformers (DiT) models. PipeFusion splits images into patches and distributes the network layers across multiple devices. It employs a pipeline parallel manner to orchestrate communication and computations. By leveraging the high similarity between the input from adjacent diffusion steps, PipeFusion eliminates the waiting time in the pipeline by reusing the one-step stale feature maps to provide context for the current step. Our experiments demonstrate that it can generate higher image resolution where existing DiT parallel approaches meet OOM. PipeFusion significantly reduces the required communication bandwidth, enabling DiT inference to be hosted on GPUs connected via PCIe rather than the more costly NVLink infrastructure, which substantially lowers the overall operational expenses for serving DiT models. Our code is publicly available at //github.com/PipeFusion/PipeFusion.

In this paper, we make the first attempt to understand and test potential computation efficiency robustness in state-of-the-art LLMs. By analyzing the working mechanism and implementation of 20,543 public-accessible LLMs, we observe a fundamental property in LLMs that could be manipulated in an adversarial manner to reduce computation efficiency significantly. Our key motivation is to generate test inputs that could sufficiently delay the generation of EOS such that LLMs would have to go through enough iterations to satisfy the pre-configured threshold. We present \tool, which can work under both white-box setting and black-box setting. In the white-box scenario, \tool develops a gradient-guided technique that searches for a minimal and unnoticeable perturbation at character-level, token-level, and structure-level. In the black-box scenario, \tool employs a causal inference-based approach to find critical tokens and similarly applies three levels of imperceptible perturbation to them. Both the white-box and black-box settings effectively delay the appearance of EOS, compelling these inputs to reach the naturally-unreachable threshold. To demonstrate the effectiveness of \tool, we conduct a systematic evaluation on nine public-available LLMs: Google T5, AllenAI WMT14, Helsinki-NLP translator, Facebook FairSeq, UNICAMP-DL translator, MarianMT, Google FLAN-T5, MBZUAI LaMini-GPT and Salesforce CodeGen. Experimental results show that \tool can increase on average LLMs' response latency and energy consumption by 325\% to 3244\% and 344\% to 3616\%, respectively, by perturbing just one character or token in the input sentence.

Finetuning large language models (LLMs) in federated learning (FL) settings has become important as it allows resource-constrained devices to finetune a model using private data. However, finetuning LLMs using backpropagation requires excessive memory (especially from intermediate activations) for resource-constrained devices. While Forward-mode Auto-Differentiation (AD) can reduce memory footprint from activations, we observe that directly applying it to LLM finetuning results in slow convergence and poor accuracy. This work introduces Spry, an FL algorithm that splits trainable weights of an LLM among participating clients, such that each client computes gradients using Forward-mode AD that are closer estimates of the true gradients. Spry achieves a low memory footprint, high accuracy, and fast convergence. We theoretically show that the global gradients in Spry are unbiased estimates of true global gradients for homogeneous data distributions across clients, while heterogeneity increases bias of the estimates. We also derive Spry's convergence rate, showing that the gradients decrease inversely proportional to the number of FL rounds, indicating the convergence up to the limits of heterogeneity. Empirically, Spry reduces the memory footprint during training by 1.4-7.1$\times$ in contrast to backpropagation, while reaching comparable accuracy, across a wide range of language tasks, models, and FL settings. Spry reduces the convergence time by 1.2-20.3$\times$ and achieves 5.2-13.5\% higher accuracy against state-of-the-art zero-order methods. When finetuning Llama2-7B with LoRA, compared to the peak memory usage of 33.9GB of backpropagation, Spry only consumes 6.2GB of peak memory. For OPT13B, the reduction is from 76.5GB to 10.8GB. Spry makes feasible previously impossible FL deployments on commodity mobile and edge devices. Source code is available at //github.com/Astuary/Spry.

Despite the crucial importance of accelerating text generation in large language models (LLMs) for efficiently producing content, the sequential nature of this process often leads to high inference latency, posing challenges for real-time applications. Various techniques have been proposed and developed to address these challenges and improve efficiency. This paper presents a comprehensive survey of accelerated generation techniques in autoregressive language models, aiming to understand the state-of-the-art methods and their applications. We categorize these techniques into several key areas: speculative decoding, early exiting mechanisms, and non-autoregressive methods. We discuss each category's underlying principles, advantages, limitations, and recent advancements. Through this survey, we aim to offer insights into the current landscape of techniques in LLMs and provide guidance for future research directions in this critical area of natural language processing.

In this study, we critically examine the foundational premise of algorithmic recourse - a process of generating counterfactual action plans (i.e., recourses) assisting individuals to reverse adverse decisions made by AI systems. The assumption underlying algorithmic recourse is that individuals accept and act on recourses that minimize the gap between their current and desired states. This assumption, however, remains empirically unverified. To address this issue, we conducted a user study with 362 participants and assessed whether minimizing the distance function, a metric of the gap between the current and desired states, indeed prompts them to accept and act upon suggested recourses. Our findings reveal a nuanced landscape: participants' acceptance of recourses did not correlate with the recourse distance. Moreover, participants' willingness to act upon recourses peaked at the minimal recourse distance but was otherwise constant. These findings cast doubt on the prevailing assumption of algorithmic recourse research and signal the need to rethink the evaluation functions to pave the way for human-centered recourse generation.

We propose a new asymptotic equipartition property for the perplexity of a large piece of text generated by a language model and present theoretical arguments for this property. Perplexity, defined as a inverse likelihood function, is widely used as a performance metric for training language models. Our main result states that the logarithmic perplexity of any large text produced by a language model must asymptotically converge to the average entropy of its token distributions. This means that language models are constrained to only produce outputs from a ``typical set", which we show, is a vanishingly small subset of all possible grammatically correct outputs. We present preliminary experimental results from an open-source language model to support our theoretical claims. This work has possible practical applications for understanding and improving ``AI detection" tools and theoretical implications for the uniqueness, predictability and creative potential of generative models.

Large language models (LLMs) have significantly advanced the field of natural language processing (NLP), providing a highly useful, task-agnostic foundation for a wide range of applications. The great promise of LLMs as general task solvers motivated people to extend their functionality largely beyond just a ``chatbot'', and use it as an assistant or even replacement for domain experts and tools in specific domains such as healthcare, finance, and education. However, directly applying LLMs to solve sophisticated problems in specific domains meets many hurdles, caused by the heterogeneity of domain data, the sophistication of domain knowledge, the uniqueness of domain objectives, and the diversity of the constraints (e.g., various social norms, cultural conformity, religious beliefs, and ethical standards in the domain applications). To fill such a gap, explosively-increase research, and practices have been conducted in very recent years on the domain specialization of LLMs, which, however, calls for a comprehensive and systematic review to better summarizes and guide this promising domain. In this survey paper, first, we propose a systematic taxonomy that categorizes the LLM domain-specialization techniques based on the accessibility to LLMs and summarizes the framework for all the subcategories as well as their relations and differences to each other. We also present a comprehensive taxonomy of critical application domains that can benefit from specialized LLMs, discussing their practical significance and open challenges. Furthermore, we offer insights into the current research status and future trends in this area.

In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.

北京阿比特科技有限公司