亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We introduce a new tool, Transductive Local Complexity (TLC), designed to analyze the generalization performance of transductive learning methods and inspire the development of new algorithms in this domain. Our work extends the concept of the popular Local Rademacher Complexity (LRC) to the transductive setting, incorporating significant and novel modifications compared to the typical analysis of LRC methods in the inductive setting. While LRC has been widely used as a powerful tool for analyzing inductive models, providing sharp generalization bounds for classification and minimax rates for nonparametric regression, it remains an open question whether a localized Rademacher complexity-based tool can be developed for transductive learning. Our goal is to achieve sharp bounds for transductive learning that align with the inductive excess risk bounds established by LRC. We provide a definitive answer to this open problem with the introduction of TLC. We construct TLC by first establishing a novel and sharp concentration inequality for the supremum of a test-train empirical processes. Using a peeling strategy and a new surrogate variance operator, we derive the a novel excess risk bound in the transductive setting which is consistent with the classical LRC-based excess risk bound in the inductive setting. As an application of TLC, we employ this new tool to analyze the Transductive Kernel Learning (TKL) model, deriving sharper excess risk bounds than those provided by the current state-of-the-art under the same assumptions. Additionally, the concentration inequality for the test-train process is employed to derive a sharp concentration inequality for the general supremum of empirical processes involving random variables in the setting of uniform sampling without replacement. The sharpness of our derived bound is compared to existing concentration inequalities under the same conditions.

相關內容

In distributed computing by mobile robots, robots are deployed over a region, continuous or discrete, operating through a sequence of \textit{look-compute-move} cycles. An extensive study has been carried out to understand the computational powers of different robot models. The models vary on the ability to 1)~remember constant size information and 2)~communicate constant size message. Depending on the abilities the different models are 1)~$\mathcal{OBLOT}$ (robots are oblivious and silent), 2)~$\mathcal{FSTA}$ (robots have finite states but silent), 3)~$\mathcal{FCOM}$ (robots are oblivious but can communicate constant size information) and, 4)~$\mathcal{LUMI}$ (robots have finite states and can communicate constant size information). Another factor that affects computational ability is the scheduler that decides the activation time of the robots. The main three schedulers are \textit{fully-synchronous}, \textit{semi-synchronous} and \textit{asynchronous}. Combining the models ($M$) with schedulers ($K$), we have twelve combinations $M^K$. In the euclidean domain, the comparisons between these twelve variants have been done in different works for transparent robots, opaque robots, and robots with limited visibility. There is a vacant space for similar works when robots are operating on discrete regions like networks. It demands separate research attention because there have been a series of works where robots operate on different networks, and there is a fundamental difference when robots are operating on a continuous domain versus a discrete domain in terms of robots' movement. This work contributes to filling the space by giving a full comparison table for all models with two synchronous schedulers: fully-synchronous and semi-synchronous.

Combining the predictions of multiple trained models through ensembling is generally a good way to improve accuracy by leveraging the different learned features of the models, however it comes with high computational and storage costs. Model fusion, the act of merging multiple models into one by combining their parameters reduces these costs but doesn't work as well in practice. Indeed, neural network loss landscapes are high-dimensional and non-convex and the minima found through learning are typically separated by high loss barriers. Numerous recent works have been focused on finding permutations matching one network features to the features of a second one, lowering the loss barrier on the linear path between them in parameter space. However, permutations are restrictive since they assume a one-to-one mapping between the different models' neurons exists. We propose a new model merging algorithm, CCA Merge, which is based on Canonical Correlation Analysis and aims to maximize the correlations between linear combinations of the model features. We show that our alignment method leads to better performances than past methods when averaging models trained on the same, or differing data splits. We also extend this analysis into the harder setting where more than 2 models are merged, and we find that CCA Merge works significantly better than past methods. Our code is publicly available at //github.com/shoroi/align-n-merge

Speech enabled foundation models, either in the form of flexible speech recognition based systems or audio-prompted large language models (LLMs), are becoming increasingly popular. One of the interesting aspects of these models is their ability to perform tasks other than automatic speech recognition (ASR) using an appropriate prompt. For example, the OpenAI Whisper model can perform both speech transcription and speech translation. With the development of audio-prompted LLMs there is the potential for even greater control options. In this work we demonstrate that with this greater flexibility the systems can be susceptible to model-control adversarial attacks. Without any access to the model prompt it is possible to modify the behaviour of the system by appropriately changing the audio input. To illustrate this risk, we demonstrate that it is possible to prepend a short universal adversarial acoustic segment to any input speech signal to override the prompt setting of an ASR foundation model. Specifically, we successfully use a universal adversarial acoustic segment to control Whisper to always perform speech translation, despite being set to perform speech transcription. Overall, this work demonstrates a new form of adversarial attack on multi-tasking speech enabled foundation models that needs to be considered prior to the deployment of this form of model.

We present a comprehensive study of answer quality evaluation in Retrieval-Augmented Generation (RAG) applications using vRAG-Eval, a novel grading system that is designed to assess correctness, completeness, and honesty. We further map the grading of quality aspects aforementioned into a binary score, indicating an accept or reject decision, mirroring the intuitive "thumbs-up" or "thumbs-down" gesture commonly used in chat applications. This approach suits factual business settings where a clear decision opinion is essential. Our assessment applies vRAG-Eval to two Large Language Models (LLMs), evaluating the quality of answers generated by a vanilla RAG application. We compare these evaluations with human expert judgments and find a substantial alignment between GPT-4's assessments and those of human experts, reaching 83% agreement on accept or reject decisions. This study highlights the potential of LLMs as reliable evaluators in closed-domain, closed-ended settings, particularly when human evaluations require significant resources.

This paper presents a mapping strategy for interacting with the latent spaces of generative AI models. Our approach involves using unsupervised feature learning to encode a human control space and mapping it to an audio synthesis model's latent space. To demonstrate how this mapping strategy can turn high-dimensional sensor data into control mechanisms of a deep generative model, we present a proof-of-concept system that uses visual sketches to control an audio synthesis model. We draw on emerging discourses in XAIxArts to discuss how this approach can contribute to XAI in artistic and creative contexts, we also discuss its current limitations and propose future research directions.

This paper introduces the concept of Language-Guided World Models (LWMs) -- probabilistic models that can simulate environments by reading texts. Agents equipped with these models provide humans with more extensive and efficient control, allowing them to simultaneously alter agent behaviors in multiple tasks via natural verbal communication. In this work, we take initial steps in developing robust LWMs that can generalize to compositionally novel language descriptions. We design a challenging world modeling benchmark based on the game of MESSENGER (Hanjie et al., 2021), featuring evaluation settings that require varying degrees of compositional generalization. Our experiments reveal the lack of generalizability of the state-of-the-art Transformer model, as it offers marginal improvements in simulation quality over a no-text baseline. We devise a more robust model by fusing the Transformer with the EMMA attention mechanism (Hanjie et al., 2021). Our model substantially outperforms the Transformer and approaches the performance of a model with an oracle semantic parsing and grounding capability. To demonstrate the practicality of this model in improving AI safety and transparency, we simulate a scenario in which the model enables an agent to present plans to a human before execution, and to revise plans based on their language feedback.

The recent success of large language models (LLMs) trained on static, pre-collected, general datasets has sparked numerous research directions and applications. One such direction addresses the non-trivial challenge of integrating pre-trained LLMs into dynamic data distributions, task structures, and user preferences. Pre-trained LLMs, when tailored for specific needs, often experience significant performance degradation in previous knowledge domains -- a phenomenon known as "catastrophic forgetting". While extensively studied in the continual learning (CL) community, it presents new manifestations in the realm of LLMs. In this survey, we provide a comprehensive overview of the current research progress on LLMs within the context of CL. This survey is structured into four main sections: we first describe an overview of continually learning LLMs, consisting of two directions of continuity: vertical continuity (or vertical continual learning), i.e., continual adaptation from general to specific capabilities, and horizontal continuity (or horizontal continual learning), i.e., continual adaptation across time and domains (Section 3). We then summarize three stages of learning LLMs in the context of modern CL: Continual Pre-Training (CPT), Domain-Adaptive Pre-training (DAP), and Continual Fine-Tuning (CFT) (Section 4). Then we provide an overview of evaluation protocols for continual learning with LLMs, along with the current available data sources (Section 5). Finally, we discuss intriguing questions pertaining to continual learning for LLMs (Section 6). The full list of papers examined in this survey is available at //github.com/Wang-ML-Lab/llm-continual-learning-survey.

Graph neural networks (GNNs) are effective machine learning models for many graph-related applications. Despite their empirical success, many research efforts focus on the theoretical limitations of GNNs, i.e., the GNNs expressive power. Early works in this domain mainly focus on studying the graph isomorphism recognition ability of GNNs, and recent works try to leverage the properties such as subgraph counting and connectivity learning to characterize the expressive power of GNNs, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for models for enhancing expressive power under different forms of definition. Concretely, the models are reviewed based on three categories, i.e., Graph feature enhancement, Graph topology enhancement, and GNNs architecture enhancement.

With the extremely rapid advances in remote sensing (RS) technology, a great quantity of Earth observation (EO) data featuring considerable and complicated heterogeneity is readily available nowadays, which renders researchers an opportunity to tackle current geoscience applications in a fresh way. With the joint utilization of EO data, much research on multimodal RS data fusion has made tremendous progress in recent years, yet these developed traditional algorithms inevitably meet the performance bottleneck due to the lack of the ability to comprehensively analyse and interpret these strongly heterogeneous data. Hence, this non-negligible limitation further arouses an intense demand for an alternative tool with powerful processing competence. Deep learning (DL), as a cutting-edge technology, has witnessed remarkable breakthroughs in numerous computer vision tasks owing to its impressive ability in data representation and reconstruction. Naturally, it has been successfully applied to the field of multimodal RS data fusion, yielding great improvement compared with traditional methods. This survey aims to present a systematic overview in DL-based multimodal RS data fusion. More specifically, some essential knowledge about this topic is first given. Subsequently, a literature survey is conducted to analyse the trends of this field. Some prevalent sub-fields in the multimodal RS data fusion are then reviewed in terms of the to-be-fused data modalities, i.e., spatiospectral, spatiotemporal, light detection and ranging-optical, synthetic aperture radar-optical, and RS-Geospatial Big Data fusion. Furthermore, We collect and summarize some valuable resources for the sake of the development in multimodal RS data fusion. Finally, the remaining challenges and potential future directions are highlighted.

We present Emu, a system that semantically enhances multilingual sentence embeddings. Our framework fine-tunes pre-trained multilingual sentence embeddings using two main components: a semantic classifier and a language discriminator. The semantic classifier improves the semantic similarity of related sentences, whereas the language discriminator enhances the multilinguality of the embeddings via multilingual adversarial training. Our experimental results based on several language pairs show that our specialized embeddings outperform the state-of-the-art multilingual sentence embedding model on the task of cross-lingual intent classification using only monolingual labeled data.

北京阿比特科技有限公司