Wireless Body Area Network (WBAN) ensures high-quality healthcare services by endowing distant and continual monitoring of patients' health conditions. The security and privacy of the sensitive health-related data transmitted through the WBAN should be preserved to maximize its benefits. In this regard, user authentication is one of the primary mechanisms to protect health data that verifies the identities of entities involved in the communication process. Since WBAN carries crucial health data, every entity engaged in the data transfer process must be authenticated. In literature, an end-to-end user authentication mechanism covering each communicating party is absent. Besides, most of the existing user authentication mechanisms are designed assuming that the patient's mobile phone is trusted. In reality, a patient's mobile phone can be stolen or comprised by malware and thus behaves maliciously. Our work addresses these drawbacks and proposes an end-to-end user authentication and session key agreement scheme between sensor nodes and medical experts in a scenario where the patient's mobile phone is semi-trusted. We present a formal security analysis using BAN logic. Besides, we also provide an informal security analysis of the proposed scheme. Both studies indicate that our method is robust against well-known security attacks. In addition, our scheme achieves comparable computation and communication costs concerning the related existing works. The simulation shows that our method preserves satisfactory network performance.
Industry 4.0 uses a subset of the IoT, named Industrial IoT (IIoT), to achieve connectivity, interoperability, and decentralization. The deployment of industrial networks rarely considers security by design, but this becomes imperative in smart manufacturing as connectivity increases. The combination of OT and IT infrastructures in Industry 4.0 adds new security threats beyond those of traditional industrial networks. Defence-in-Depth (DiD) strategies tackle the complexity of this problem by providing multiple defense layers, each of these focusing on a particular set of threats. Additionally, the strict requirements of IIoT networks demand lightweight encryption algorithms. Nevertheless, these ciphers must provide E2E (End-to-End) security, as data passes through intermediate entities or middleboxes before reaching their destination. If compromised, middleboxes could expose vulnerable information to potential attackers if it is not encrypted throughout this path. This paper presents an analysis of the most relevant security strategies in Industry 4.0, focusing primarily on DiD. With these in mind, it proposes a combination of DiD, an encryption algorithm called Attribute-Based-Encryption (ABE), and object security (i.e., OSCORE) to get an E2E security approach. This analysis is a critical first step to developing more complex and lightweight security frameworks suitable for Industry 4.0.
Cyber Security is a critical topic for organizations with IT/OT networks as they are always susceptible to attack, whether insider or outsider. Since the cyber landscape is an ever-evolving scenario, one must keep upgrading its security systems to enhance the security of the infrastructure. Tools like Security Information and Event Management (SIEM), Endpoint Detection and Response (EDR), Threat Intelligence Platform (TIP), Information Technology Service Management (ITSM), along with other defensive techniques like Intrusion Detection System (IDS), Intrusion Protection System (IPS), and many others enhance the cyber security posture of the infrastructure. However, the proposed protection mechanisms have their limitations, they are insufficient to ensure security, and the attacker penetrates the network. Deception technology, along with Honeypots, provides a false sense of vulnerability in the target systems to the attackers. The attacker deceived reveals threat intel about their modus operandi. We have developed a Security Orchestration, Automation, and Response (SOAR) Engine that dynamically deploys custom honeypots inside the internal network infrastructure based on the attacker's behavior. The architecture is robust enough to support multiple VLANs connected to the system and used for orchestration. The presence of botnet traffic and DDOS attacks on the honeypots in the network is detected, along with a malware collection system. After being exposed to live traffic for four days, our engine dynamically orchestrated the honeypots 40 times, detected 7823 attacks, 965 DDOS attack packets, and three malicious samples. While our experiments with static honeypots show an average attacker engagement time of 102 seconds per instance, our SOAR Engine-based dynamic honeypots engage attackers on average 3148 seconds.
Emerging applications such as Augmented Reality, the Internet of Vehicles and Remote Surgery require both computing and networking functions working in harmony. The End-to-end (E2E) quality of experience (QoE) for these applications depends on the synchronous allocation of networking and computing resources. However, the relationship between the resources and the E2E QoE outcomes is typically stochastic and non-linear. In order to make efficient resource allocation decisions, it is essential to model these relationships. This article presents a novel machine-learning based approach to learn these relationships and concurrently orchestrate both resources for this purpose. The machine learning models further help make robust allocation decisions regarding stochastic variations and simplify robust optimization to a conventional constrained optimization. When resources are insufficient to accommodate all application requirements, our framework supports executing some of the applications with minimal degradation (graceful degradation) of E2E QoE. We also show how we can implement the learning and optimization methods in a distributed fashion by the Software-Defined Network (SDN) and Kubernetes technologies. Our results show that deep learning-based modelling achieves E2E QoE with approximately 99.8\% accuracy, and our robust joint-optimization technique allocates resources efficiently when compared to existing differential services alternatives.
Federated learning (FL) offers a decentralized learning environment so that a group of clients can collaborate to train a global model at the server, while keeping their training data confidential. This paper studies how to launch over-the-air jamming attacks to disrupt the FL process when it is executed over a wireless network. As a wireless example, FL is applied to learn how to classify wireless signals collected by clients (spectrum sensors) at different locations (such as in cooperative sensing). An adversary can jam the transmissions for the local model updates from clients to the server (uplink attack), or the transmissions for the global model updates the server to clients (downlink attack), or both. Given a budget imposed on the number of clients that can be attacked per FL round, clients for the (uplink/downlink) attack are selected according to their local model accuracies that would be expected without an attack or ranked via spectrum observations. This novel attack is extended to general settings by accounting different processing speeds and attack success probabilities for clients. Compared to benchmark attack schemes, this attack approach degrades the FL performance significantly, thereby revealing new vulnerabilities of FL to jamming attacks in wireless networks.
Disability is an important factor affecting todays society. At the same time, more and more sub-healthy people are sick due to reduced body functions and cognitive functions. Exercise rehabilitation is a kind of physical therapy, which can recover the motor ability, cognitive ability, and mental state of them through exercise. But the traditional exercise rehabilitation has some drawbacks so that people who need exercise rehabilitation cannot stick to it. Therefore, many researchers improved the drawbacks of traditional exercise rehabilitation by serious games for exercise rehabilitation. Although there were abundant achievements in the games, its relevant technologies and representative games are not be summarized systematically. To fill this gap, we introduced the significance of the convergence of exercise rehabilitation and serious games. Then, our paper sorted out the development of the games based on interaction mode between games and players. Besides, we analyzed the characteristics of different user groups and the specific functions of the games corresponding to them, and gave our classification based on this. Based on the classification, we reviewed related studies of the games in the past decade years and gave some suggestions on game design and development. Finally, we proposed serval research directions worth studying about the games technology development, functional design and social popularization.
Vehicular networks promise features such as traffic management, route scheduling, data exchange, entertainment, and much more. With any large-scale technological integration comes the challenge of providing security. Blockchain technology has been a popular choice of many studies for making the vehicular network more secure. Its characteristics meet some of the essential security requirements such as decentralization, transparency, tamper-proof nature, and public audit. This study catalogues some of the notable efforts in this direction over the last few years. We analyze around 75 blockchain-based security schemes for vehicular networks from an application, security, and blockchain perspective. The application perspective focuses on various applications which use secure blockchain-based vehicular networks such as transportation, parking, data sharing/ trading, and resource sharing. The security perspective focuses on security requirements and attacks. The blockchain perspective focuses on blockchain platforms, blockchain types, and consensus mechanisms used in blockchain implementation. We also compile the popular simulation tools used for simulating blockchain and for simulating vehicular networks. Additionally, to give the readers a broader perspective of the research area, we discuss the role of various state-of-the-art emerging technologies in blockchain-based vehicular networks. Lastly, we summarize the survey by listing out some common challenges and the future research directions in this field.
Beam selection for millimeter-wave links in a vehicular scenario is a challenging problem, as an exhaustive search among all candidate beam pairs cannot be assuredly completed within short contact times. We solve this problem via a novel expediting beam selection by leveraging multimodal data collected from sensors like LiDAR, camera images, and GPS. We propose individual modality and distributed fusion-based deep learning (F-DL) architectures that can execute locally as well as at a mobile edge computing center (MEC), with a study on associated tradeoffs. We also formulate and solve an optimization problem that considers practical beam-searching, MEC processing and sensor-to-MEC data delivery latency overheads for determining the output dimensions of the above F-DL architectures. Results from extensive evaluations conducted on publicly available synthetic and home-grown real-world datasets reveal 95% and 96% improvement in beam selection speed over classical RF-only beam sweeping, respectively. F-DL also outperforms the state-of-the-art techniques by 20-22% in predicting top-10 best beam pairs.
Efficient reasoning about the semantic, spatial, and temporal structure of a scene is a crucial prerequisite for autonomous driving. We present NEural ATtention fields (NEAT), a novel representation that enables such reasoning for end-to-end imitation learning models. NEAT is a continuous function which maps locations in Bird's Eye View (BEV) scene coordinates to waypoints and semantics, using intermediate attention maps to iteratively compress high-dimensional 2D image features into a compact representation. This allows our model to selectively attend to relevant regions in the input while ignoring information irrelevant to the driving task, effectively associating the images with the BEV representation. In a new evaluation setting involving adverse environmental conditions and challenging scenarios, NEAT outperforms several strong baselines and achieves driving scores on par with the privileged CARLA expert used to generate its training data. Furthermore, visualizing the attention maps for models with NEAT intermediate representations provides improved interpretability.
The concept of smart grid has been introduced as a new vision of the conventional power grid to figure out an efficient way of integrating green and renewable energy technologies. In this way, Internet-connected smart grid, also called energy Internet, is also emerging as an innovative approach to ensure the energy from anywhere at any time. The ultimate goal of these developments is to build a sustainable society. However, integrating and coordinating a large number of growing connections can be a challenging issue for the traditional centralized grid system. Consequently, the smart grid is undergoing a transformation to the decentralized topology from its centralized form. On the other hand, blockchain has some excellent features which make it a promising application for smart grid paradigm. In this paper, we have an aim to provide a comprehensive survey on application of blockchain in smart grid. As such, we identify the significant security challenges of smart grid scenarios that can be addressed by blockchain. Then, we present a number of blockchain-based recent research works presented in different literatures addressing security issues in the area of smart grid. We also summarize several related practical projects, trials, and products that have been emerged recently. Finally, we discuss essential research challenges and future directions of applying blockchain to smart grid security issues.
We investigate Relational Graph Attention Networks, a class of models that extends non-relational graph attention mechanisms to incorporate relational information, opening up these methods to a wider variety of problems. A thorough evaluation of these models is performed, and comparisons are made against established benchmarks. To provide a meaningful comparison, we retrain Relational Graph Convolutional Networks, the spectral counterpart of Relational Graph Attention Networks, and evaluate them under the same conditions. We find that Relational Graph Attention Networks perform worse than anticipated, although some configurations are marginally beneficial for modelling molecular properties. We provide insights as to why this may be, and suggest both modifications to evaluation strategies, as well as directions to investigate for future work.