We explore the Wilks phenomena in two random graph models: the $\beta$-model and the Bradley-Terry model. For two increasing dimensional null hypotheses, including a specified null $H_0: \beta_i=\beta_i^0$ for $i=1,\ldots, r$ and a homogenous null $H_0: \beta_1=\cdots=\beta_r$, we reveal high dimensional Wilks' phenomena that the normalized log-likelihood ratio statistic, $[2\{\ell(\widehat{\mathbf{\beta}}) - \ell(\widehat{\mathbf{\beta}}^0)\} -r]/(2r)^{1/2}$, converges in distribution to the standard normal distribution as $r$ goes to infinity. Here, $\ell( \mathbf{\beta})$ is the log-likelihood function on the model parameter $\mathbf{\beta}=(\beta_1, \ldots, \beta_n)^\top$, $\widehat{\mathbf{\beta}}$ is its maximum likelihood estimator (MLE) under the full parameter space, and $\widehat{\mathbf{\beta}}^0$ is the restricted MLE under the null parameter space. For the homogenous null with a fixed $r$, we establish Wilks-type theorems that $2\{\ell(\widehat{\mathbf{\beta}}) - \ell(\widehat{\mathbf{\beta}}^0)\}$ converges in distribution to a chi-square distribution with $r-1$ degrees of freedom, as the total number of parameters, $n$, goes to infinity. When testing the fixed dimensional specified null, we find that its asymptotic null distribution is a chi-square distribution in the $\beta$-model. However, unexpectedly, this is not true in the Bradley-Terry model. By developing several novel technical methods for asymptotic expansion, we explore Wilks type results in a principled manner; these principled methods should be applicable to a class of random graph models beyond the $\beta$-model and the Bradley-Terry model. Simulation studies and real network data applications further demonstrate the theoretical results.
A tuple (Z_1,...,Z_p) of matrices of size r is said to be a commuting extension of a tuple (A_1,...,A_p) of matrices of size n <r if the Z_i pairwise commute and each A_i sits in the upper left corner of a block decomposition of Z_i. This notion was discovered and rediscovered in several contexts including algebraic complexity theory (in Strassen's work on tensor rank), in numerical analysis for the construction of cubature formulas and in quantum mechanics for the study of computational methods and the study of the so-called "quantum Zeno dynamics." Commuting extensions have also attracted the attention of the linear algebra community. In this paper we present 3 types of results: (i) Theorems on the uniqueness of commuting extensions for three matrices or more. (ii) Algorithms for the computation of commuting extensions of minimal size. These algorithms work under the same assumptions as our uniqueness theorems. They are applicable up to r=4n/3, and are apparently the first provably efficient algorithms for this problem applicable beyond r=n+1. (iii) A genericity theorem showing that our algorithms and uniqueness theorems can be applied to a wide range of input matrices.
We compute explicitly the MTW tensor (or cross curvature) for the optimal transport problem on $\mathbb{R}^n$ with a cost function of form $\mathsf{c}(x, y) = \mathsf{u}(x^{\mathfrak{t}}y)$, where $\mathsf{u}$ is a scalar function with inverse $\mathsf{s}$, $x^{\ft}y$ is a nondegenerate bilinear pairing of vectors $x, y$ belonging to an open subset of $\mathbb{R}^n$. The condition that the MTW-tensor vanishes on null vectors under the Kim-McCann metric is a fourth-order nonlinear ODE, which could be reduced to a linear ODE of the form $\mathsf{s}^{(2)} - S\mathsf{s}^{(1)} + P\mathsf{s} = 0$ with constant coefficients $P$ and $S$. The resulting inverse functions include {\it Lambert} and {\it generalized inverse hyperbolic\slash trigonometric} functions. The square Euclidean metric and $\log$-type costs are equivalent to instances of these solutions. The optimal map for the family is also explicit. For cost functions of a similar form on a hyperboloid model of the hyperbolic space and unit sphere, we also express this tensor in terms of algebraic expressions in derivatives of $\mathsf{s}$ using the Gauss-Codazzi equation, obtaining new families of strictly regular costs for these manifolds, including new families of {\it power function costs}. We analyze the $\sinh$-type hyperbolic cost, providing examples of $\mathsf{c}$-convex functions and divergence.
After introducing a bit-plane quantum representation for a multi-image, we present a novel way to encrypt/decrypt multiple images using a quantum computer. Our encryption scheme is based on a two-stage scrambling of the images and of the bit planes on one hand and of the pixel positions on the other hand, each time using quantum baker maps. The resulting quantum multi-image is then diffused with controlled CNOT gates using a sine chaotification of a two-dimensional H\'enon map as well as Chebyshev polynomials. The decryption is processed by operating all the inverse quantum gates in the reverse order.
We present a deterministic algorithm for the efficient evaluation of imaginary time diagrams based on the recently introduced discrete Lehmann representation (DLR) of imaginary time Green's functions. In addition to the efficient discretization of diagrammatic integrals afforded by its approximation properties, the DLR basis is separable in imaginary time, allowing us to decompose diagrams into linear combinations of nested sequences of one-dimensional products and convolutions. Focusing on the strong coupling bold-line expansion of generalized Anderson impurity models, we show that our strategy reduces the computational complexity of evaluating an $M$th-order diagram at inverse temperature $\beta$ and spectral width $\omega_{\max}$ from $\mathcal{O}((\beta \omega_{\max})^{2M-1})$ for a direct quadrature to $\mathcal{O}(M (\log (\beta \omega_{\max}))^{M+1})$, with controllable high-order accuracy. We benchmark our algorithm using third-order expansions for multi-band impurity problems with off-diagonal hybridization and spin-orbit coupling, presenting comparisons with exact diagonalization and quantum Monte Carlo approaches. In particular, we perform a self-consistent dynamical mean-field theory calculation for a three-band Hubbard model with strong spin-orbit coupling representing a minimal model of Ca$_2$RuO$_4$, demonstrating the promise of the method for modeling realistic strongly correlated multi-band materials. For both strong and weak coupling expansions of low and intermediate order, in which diagrams can be enumerated, our method provides an efficient, straightforward, and robust black-box evaluation procedure. In this sense, it fills a gap between diagrammatic approximations of the lowest order, which are simple and inexpensive but inaccurate, and those based on Monte Carlo sampling of high-order diagrams.
Fix a positive integer $n$, a real number $p\in (0,1]$, and a (perhaps random) hypergraph $\mathcal{H}$ on $[n]$. We introduce and investigate the following random multigraph model, which we denote $\mathbb{G}(n,p\, ; \,\mathcal{H})$: begin with an empty graph on $n$ vertices, which are labelled by the set $[n]$. For every $H\in \mathcal{H}$ choose, independently from previous choices, a doubleton from $H$, say $D = \{i,j\} \subset H$, uniformly at random and then introduce an edge between the vertices $i$ and $j$ in the graph with probability $p$, where each edge is introduced independently of all other edges.
Proper X-ray radiation design (via dynamic fluence field modulation, FFM) allows to reduce effective radiation dose in computed tomography without compromising image quality. It takes into account patient anatomy, radiation sensitivity of different organs and tissues, and location of regions of interest. We account all these factors within a general convex optimization framework.
The Allen-Cahn equation (ACE) inherently possesses two crucial properties: the maximum principle and the energy dissipation law. Preserving these two properties at the discrete level is also necessary in the numerical methods for the ACE. In this paper, unlike the traditional top-down macroscopic numerical schemes which discretize the ACE directly, we first propose a novel bottom-up mesoscopic regularized lattice Boltzmann method based macroscopic numerical scheme for d(=1,2,3)-dimensional ACE, where the DdQ(2d+1) [(2d+1) discrete velocities in d-dimensional space] lattice structure is adopted. In particular, the proposed macroscopic numerical scheme has a second-order accuracy in space, and can also be viewd as an implicit-explicit finite-difference scheme for the ACE, in which the nonlinear term is discretized semi-implicitly, the temporal derivative and dissipation term of the ACE are discretized by using the explicit Euler method and second-order central difference method, respectively. Then we also demonstrate that the proposed scheme can preserve the maximum bound principle and the original energy dissipation law at the discrete level under some conditions. Finally, some numerical experiments are conducted to validate our theoretical analysis.
We propose and analyze a unified structure-preserving parametric finite element method (SP-PFEM) for the anisotropic surface diffusion of curves in two dimensions $(d=2)$ and surfaces in three dimensions $(d=3)$ with an arbitrary anisotropic surface energy density $\gamma(\boldsymbol{n})$, where $\boldsymbol{n}\in \mathbb{S}^{d-1}$ represents the outward unit vector. By introducing a novel unified surface energy matrix $\boldsymbol{G}_k(\boldsymbol{n})$ depending on $\gamma(\boldsymbol{n})$, the Cahn--Hoffman $\boldsymbol{\xi}$-vector and a stabilizing function $k(\boldsymbol{n}):\ \mathbb{S}^{d-1}\to {\mathbb R}$, we obtain a unified and conservative variational formulation for the anisotropic surface diffusion via different surface differential operators including the surface gradient operator, the surface divergence operator and the surface Laplace--Beltrami operator. A SP-PFEM discretization is presented for the variational problem. In order to establish the unconditional energy stability of the proposed SP-PFEM under a very mild condition on $\gamma(\boldsymbol{n})$, we propose a new framework via {\sl local energy estimate} for proving energy stability/structure-preserving properties of the parametric finite element method for the anisotropic surface diffusion. This framework sheds light on how to prove unconditional energy stability of other numerical methods for geometric partial differential equations. Extensive numerical results are reported to demonstrate the efficiency and accuracy as well as structure-preserving properties of the proposed SP-PFEM for the anisotropic surface diffusion with arbitrary anisotropic surface energy density $\gamma(\boldsymbol{n})$ arising from different applications.
We propose a new density estimation algorithm. Given $n$ i.i.d. samples from a distribution belonging to a class of densities on $\mathbb{R}^d$, our estimator outputs any density in the class whose ''perceptron discrepancy'' with the empirical distribution is at most $O(\sqrt{d/n})$. The perceptron discrepancy between two distributions is defined as the largest difference in mass that they place on any halfspace of $\mathbb{R}^d$. It is shown that this estimator achieves expected total variation distance to the truth that is almost minimax optimal over the class of densities with bounded Sobolev norm and Gaussian mixtures. This suggests that regularity of the prior distribution could be an explanation for the efficiency of the ubiquitous step in machine learning that replaces optimization over large function spaces with simpler parametric classes (e.g. in the discriminators of GANs). We generalize the above to show that replacing the ''perceptron discrepancy'' with the generalized energy distance of Sz\'ekeley-Rizzo further improves total variation loss. The generalized energy distance between empirical distributions is easily computable and differentiable, thus making it especially useful for fitting generative models. To the best of our knowledge, it is the first example of a distance with such properties for which there are minimax statistical guarantees.
We prove the following variant of Levi's Enlargement Lemma: for an arbitrary arrangement $\mathcal{A}$ of $x$-monotone pseudosegments in the plane and a pair of points $a,b$ with distinct $x$-coordinates and not on the same pseudosegment, there exists a simple $x$-monotone curve with endpoints $a,b$ that intersects every curve of $\mathcal{A}$ at most once. As a consequence, every simple monotone drawing of a graph can be extended to a simple monotone drawing of a complete graph. We also show that extending an arrangement of cylindrically monotone pseudosegments is not always possible; in fact, the corresponding decision problem is NP-hard.