亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We compute explicitly the MTW tensor (or cross curvature) for the optimal transport problem on $\mathbb{R}^n$ with a cost function of form $\mathsf{c}(x, y) = \mathsf{u}(x^{\mathfrak{t}}y)$, where $\mathsf{u}$ is a scalar function with inverse $\mathsf{s}$, $x^{\ft}y$ is a nondegenerate bilinear pairing of vectors $x, y$ belonging to an open subset of $\mathbb{R}^n$. The condition that the MTW-tensor vanishes on null vectors under the Kim-McCann metric is a fourth-order nonlinear ODE, which could be reduced to a linear ODE of the form $\mathsf{s}^{(2)} - S\mathsf{s}^{(1)} + P\mathsf{s} = 0$ with constant coefficients $P$ and $S$. The resulting inverse functions include {\it Lambert} and {\it generalized inverse hyperbolic\slash trigonometric} functions. The square Euclidean metric and $\log$-type costs are equivalent to instances of these solutions. The optimal map for the family is also explicit. For cost functions of a similar form on a hyperboloid model of the hyperbolic space and unit sphere, we also express this tensor in terms of algebraic expressions in derivatives of $\mathsf{s}$ using the Gauss-Codazzi equation, obtaining new families of strictly regular costs for these manifolds, including new families of {\it power function costs}. We analyze the $\sinh$-type hyperbolic cost, providing examples of $\mathsf{c}$-convex functions and divergence.

相關內容

In this paper, we examine the relationship between the stability of the dynamical system $x^{\prime}=f(x)$ and the computability of its basins of attraction. We present a computable $C^{\infty}$ system $x^{\prime}=f(x)$ that possesses a computable and stable equilibrium point, yet whose basin of attraction is robustly non-computable in a neighborhood of $f$ in the sense that both the equilibrium point and the non-computability of its associated basin of attraction persist when $f$ is slightly perturbed. This indicates that local stability near a stable equilibrium point alone is insufficient to guarantee the computability of its basin of attraction. However, we also demonstrate that the basins of attraction associated with a structurally stable - globally stable - planar system defined on a compact set are computable. Our findings suggest that the global stability of a system and the compactness of the domain play a pivotal role in determining the computability of its basins of attraction.

On a finite time interval $(0,T)$, we consider the multiresolution Galerkin discretization of a modified Hilbert transform $\mathcal H_T$ which arises in the space-time Galerkin discretization of the linear diffusion equation. To this end, we design spline-wavelet systems in $(0,T)$ consisting of piecewise polynomials of degree $\geq 1$ with sufficiently many vanishing moments which constitute Riesz bases in the Sobolev spaces $ H^{s}_{0,}(0,T)$ and $ H^{s}_{,0}(0,T)$. These bases provide multilevel splittings of the temporal discretization spaces into "increment" or "detail" spaces of direct sum type. Via algebraic tensor-products of these temporal multilevel discretizations with standard, hierarchic finite element spaces in the spatial domain (with standard Lagrangian FE bases), sparse space-time tensor-product spaces are obtained, which afford a substantial reduction in the number of the degrees of freedom as compared to time-marching discretizations. In addition, temporal spline-wavelet bases allow to compress certain nonlocal integrodifferential operators which appear in stable space-time variational formulations of initial-boundary value problems, such as the heat equation and the acoustic wave equation. An efficient preconditioner is proposed that affords linear complexity solves of the linear system of equations which results from the sparse space-time Galerkin discretization.

This paper studies the complexity of classical modal logics and of their extension with fixed-point operators, using translations to transfer results across logics. In particular, we show several complexity results for multi-agent logics via translations to and from the $\mu$-calculus and modal logic, which allow us to transfer known upper and lower bounds. We also use these translations to introduce a terminating tableau system for the logics we study, based on Kozen's tableau for the $\mu$-calculus, and the one of Fitting and Massacci for modal logic. Finally, we show how to encode the tableaux we introduced into $\mu$-calculus formulas. This encoding provides upper bounds for the satisfiability checking of the few logics we previously did not have algorithms for.

We analyze a Discontinuous Galerkin method for a problem with linear advection-reaction and $p$-type diffusion, with Sobolev indices $p\in (1, \infty)$. The discretization of the diffusion term is based on the full gradient including jump liftings and interior-penalty stabilization while, for the advective contribution, we consider a strengthened version of the classical upwind scheme. The developed error estimates track the dependence of the local contributions to the error on local P\'eclet numbers. A set of numerical tests supports the theoretical derivations.

We give a fully polynomial-time randomized approximation scheme (FPRAS) for two terminal reliability in directed acyclic graphs (DAGs). In contrast, we also show the complementing problem of approximating two terminal unreliability in DAGs is #BIS-hard.

{We analyze a general Implicit-Explicit (IMEX) time discretization for the compressible Euler equations of gas dynamics, showing that they are asymptotic-preserving (AP) in the low Mach number limit. The analysis is carried out for a general equation of state (EOS). We consider both a single asymptotic length scale and two length scales. We then show that, when coupling these time discretizations with a Discontinuous Galerkin (DG) space discretization with appropriate fluxes, an all Mach number numerical method is obtained. A number of relevant benchmarks for ideal gases and their non-trivial extension to non-ideal EOS validate the performed analysis.

The classical Heawood inequality states that if the complete graph $K_n$ on $n$ vertices is embeddable in the sphere with $g$ handles, then $g \ge\dfrac{(n-3)(n-4)}{12}$. A higher-dimensional analogue of the Heawood inequality is the K\"uhnel conjecture. In a simplified form it states that for every integer $k>0$ there is $c_k>0$ such that if the union of $k$-faces of $n$-simplex embeds into the connected sum of $g$ copies of the Cartesian product $S^k\times S^k$ of two $k$-dimensional spheres, then $g\ge c_k n^{k+1}$. For $k>1$ only linear estimates were known. We present a quadratic estimate $g\ge c_k n^2$. The proof is based on beautiful and fruitful interplay between geometric topology, combinatorics and linear algebra.

This work focuses on the numerical approximations of neutral stochastic delay differential equations with their drift and diffusion coefficients growing super-linearly with respect to both delay variables and state variables. Under generalized monotonicity conditions, we prove that the backward Euler method not only converges strongly in the mean square sense with order $1/2$, but also inherit the mean square exponential stability of the original equations. As a byproduct, we obtain the same results on convergence rate and exponential stability of the backward Euler method for stochastic delay differential equations with generalized monotonicity conditions. These theoretical results are finally supported by several numerical experiments.

We consider a model selection problem for structural equation modeling (SEM) with latent variables for diffusion processes based on high-frequency data. First, we propose the quasi-Akaike information criterion of the SEM and study the asymptotic properties. Next, we consider the situation where the set of competing models includes some misspecified parametric models. It is shown that the probability of choosing the misspecified models converges to zero. Furthermore, examples and simulation results are given.

Partial differential equations (PDEs) have become an essential tool for modeling complex physical systems. Such equations are typically solved numerically via mesh-based methods, such as finite element methods, with solutions over the spatial domain. However, obtaining these solutions are often prohibitively costly, limiting the feasibility of exploring parameters in PDEs. In this paper, we propose an efficient emulator that simultaneously predicts the solutions over the spatial domain, with theoretical justification of its uncertainty quantification. The novelty of the proposed method lies in the incorporation of the mesh node coordinates into the statistical model. In particular, the proposed method segments the mesh nodes into multiple clusters via a Dirichlet process prior and fits Gaussian process models with the same hyperparameters in each of them. Most importantly, by revealing the underlying clustering structures, the proposed method can provide valuable insights into qualitative features of the resulting dynamics that can be used to guide further investigations. Real examples are demonstrated to show that our proposed method has smaller prediction errors than its main competitors, with competitive computation time, and identifies interesting clusters of mesh nodes that possess physical significance, such as satisfying boundary conditions. An R package for the proposed methodology is provided in an open repository.

北京阿比特科技有限公司