Photonics is a promising technology to accelerate Deep Neural Networks as it can use optical interconnects to reduce data movement energy and it enables low-energy, high-throughput optical-analog computations. To realize these benefits in a full system (accelerator + DRAM), designers must ensure that the benefits of using the electrical, optical, analog, and digital domains exceed the costs of converting data between domains. Designers must also consider system-level energy costs such as data fetch from DRAM. Converting data and accessing DRAM can consume significant energy, so to evaluate and explore the photonic system space, there is a need for a tool that can model these full-system considerations. In this work, we show that similarities between Compute-in-Memory (CiM) and photonics let us use CiM system modeling tools to accurately model photonics systems. Bringing modeling tools to photonics enables evaluation of photonic research in a full-system context, rapid design space exploration, co-design, and comparison between systems. Using our open-source model, we show that cross-domain conversion and DRAM can consume a significant portion of photonic system energy. We then demonstrate optimizations that reduce conversions and DRAM accesses to improve photonic system energy efficiency by up to 3x.
The search for ``biologically plausible'' learning algorithms has converged on the idea of representing gradients as activity differences. However, most approaches require a high degree of synchronization (distinct phases during learning) and introduce substantial computational overhead, which raises doubts regarding their biological plausibility as well as their potential utility for neuromorphic computing. Furthermore, they commonly rely on applying infinitesimal perturbations (nudges) to output units, which is impractical in noisy environments. Recently it has been shown that by modelling artificial neurons as dyads with two oppositely nudged compartments, it is possible for a fully local learning algorithm named ``dual propagation'' to bridge the performance gap to backpropagation, without requiring separate learning phases or infinitesimal nudging. However, the algorithm has the drawback that its numerical stability relies on symmetric nudging, which may be restrictive in biological and analog implementations. In this work we first provide a solid foundation for the objective underlying the dual propagation method, which also reveals a surprising connection with adversarial robustness. Second, we demonstrate how dual propagation is related to a particular adjoint state method, which is stable regardless of asymmetric nudging.
Efficient computation of the optimal transport distance between two distributions serves as an algorithm subroutine that empowers various applications. This paper develops a scalable first-order optimization-based method that computes optimal transport to within $\varepsilon$ additive accuracy with runtime $\widetilde{O}( n^2/\varepsilon)$, where $n$ denotes the dimension of the probability distributions of interest. Our algorithm achieves the state-of-the-art computational guarantees among all first-order methods, while exhibiting favorable numerical performance compared to classical algorithms like Sinkhorn and Greenkhorn. Underlying our algorithm designs are two key elements: (a) converting the original problem into a bilinear minimax problem over probability distributions; (b) exploiting the extragradient idea -- in conjunction with entropy regularization and adaptive learning rates -- to accelerate convergence.
In supervised learning, understanding an input's proximity to the training data can help a model decide whether it has sufficient evidence for reaching a reliable prediction. While powerful probabilistic models such as Gaussian Processes naturally have this property, deep neural networks often lack it. In this paper, we introduce Distance Aware Bottleneck (DAB), i.e., a new method for enriching deep neural networks with this property. Building on prior information bottleneck approaches, our method learns a codebook that stores a compressed representation of all inputs seen during training. The distance of a new example from this codebook can serve as an uncertainty estimate for the example. The resulting model is simple to train and provides deterministic uncertainty estimates by a single forward pass. Finally, our method achieves better out-of-distribution (OOD) detection and misclassification prediction than prior methods, including expensive ensemble methods, deep kernel Gaussian Processes, and approaches based on the standard information bottleneck.
Click-Through Rate (CTR) prediction has become an essential task in digital industries, such as digital advertising or online shopping. Many deep learning-based methods have been implemented and have become state-of-the-art models in the domain. To further improve the performance of CTR models, Knowledge Distillation based approaches have been widely used. However, most of the current CTR prediction models do not have much complex architectures, so it's hard to call one of them 'cumbersome' and the other one 'tiny'. On the other hand, the performance gap is also not very large between complex and simple models. So, distilling knowledge from one model to the other could not be worth the effort. Under these considerations, Mutual Learning could be a better approach, since all the models could be improved mutually. In this paper, we showed how useful the mutual learning algorithm could be when it is between equals. In our experiments on the Criteo and Avazu datasets, the mutual learning algorithm improved the performance of the model by up to 0.66% relative improvement.
Federated Knowledge Graph Embedding (FKGE) has recently garnered considerable interest due to its capacity to extract expressive representations from distributed knowledge graphs, while concurrently safeguarding the privacy of individual clients. Existing FKGE methods typically harness the arithmetic mean of entity embeddings from all clients as the global supplementary knowledge, and learn a replica of global consensus entities embeddings for each client. However, these methods usually neglect the inherent semantic disparities among distinct clients. This oversight not only results in the globally shared complementary knowledge being inundated with too much noise when tailored to a specific client, but also instigates a discrepancy between local and global optimization objectives. Consequently, the quality of the learned embeddings is compromised. To address this, we propose Personalized Federated knowledge graph Embedding with client-wise relation Graph (PFedEG), a novel approach that employs a client-wise relation graph to learn personalized embeddings by discerning the semantic relevance of embeddings from other clients. Specifically, PFedEG learns personalized supplementary knowledge for each client by amalgamating entity embedding from its neighboring clients based on their "affinity" on the client-wise relation graph. Each client then conducts personalized embedding learning based on its local triples and personalized supplementary knowledge. We conduct extensive experiments on four benchmark datasets to evaluate our method against state-of-the-art models and results demonstrate the superiority of our method.
Reconfigurable Intelligent Surface (RIS) is a pivotal technology in communication, offering an alternative path that significantly enhances the link quality in wireless communication environments. In this paper, we propose a RIS-assisted internet of vehicles (IoV) network, considering the vehicle-to-everything (V2X) communication method. In addition, in order to improve the timeliness of vehicle-to-infrastructure (V2I) links and the stability of vehicle-to-vehicle (V2V) links, we introduce the age of information (AoI) model and the payload transmission probability model. Therefore, with the objective of minimizing the AoI of V2I links and prioritizing transmission of V2V links payload, we construct this optimization problem as an Markov decision process (MDP) problem in which the BS serves as an agent to allocate resources and control phase-shift for the vehicles using the soft actor-critic (SAC) algorithm, which gradually converges and maintains a high stability. A AoI-aware joint vehicular resource allocation and RIS phase-shift control scheme based on SAC algorithm is proposed and simulation results show that its convergence speed, cumulative reward, AoI performance, and payload transmission probability outperforms those of proximal policy optimization (PPO), deep deterministic policy gradient (DDPG), twin delayed deep deterministic policy gradient (TD3) and stochastic algorithms.
Machine unlearning is an emerging technology that has come to attract widespread attention. A number of factors, including regulations and laws, privacy, and usability concerns, have resulted in this need to allow a trained model to forget some of its training data. Existing studies of machine unlearning mainly focus on unlearning requests that forget a cluster of instances or all instances from one class. While these approaches are effective in removing instances, they do not scale to scenarios where partial targets within an instance need to be forgotten. For example, one would like to only unlearn a person from all instances that simultaneously contain the person and other targets. Directly migrating instance-level unlearning to target-level unlearning will reduce the performance of the model after the unlearning process, or fail to erase information completely. To address these concerns, we have proposed a more effective and efficient unlearning scheme that focuses on removing partial targets from the model, which we name "target unlearning". Specifically, we first construct an essential graph data structure to describe the relationships between all important parameters that are selected based on the model explanation method. After that, we simultaneously filter parameters that are also important for the remaining targets and use the pruning-based unlearning method, which is a simple but effective solution to remove information about the target that needs to be forgotten. Experiments with different training models on various datasets demonstrate the effectiveness of the proposed approach.
This paper addresses the task of modeling Deformable Linear Objects (DLOs), such as ropes and cables, during dynamic motion over long time horizons. This task presents significant challenges due to the complex dynamics of DLOs. To address these challenges, this paper proposes differentiable Discrete Elastic Rods For deformable linear Objects with Real-time Modeling (DEFORM), a novel framework that combines a differentiable physics-based model with a learning framework to model DLOs accurately and in real-time. The performance of DEFORM is evaluated in an experimental setup involving two industrial robots and a variety of sensors. A comprehensive series of experiments demonstrate the efficacy of DEFORM in terms of accuracy, computational speed, and generalizability when compared to state-of-the-art alternatives. To further demonstrate the utility of DEFORM, this paper integrates it into a perception pipeline and illustrates its superior performance when compared to the state-of-the-art methods while tracking a DLO even in the presence of occlusions. Finally, this paper illustrates the superior performance of DEFORM when compared to state-of-the-art methods when it is applied to perform autonomous planning and control of DLOs. Project page: //roahmlab.github.io/DEFORM/.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
We present a large-scale study on unsupervised spatiotemporal representation learning from videos. With a unified perspective on four recent image-based frameworks, we study a simple objective that can easily generalize all these methods to space-time. Our objective encourages temporally-persistent features in the same video, and in spite of its simplicity, it works surprisingly well across: (i) different unsupervised frameworks, (ii) pre-training datasets, (iii) downstream datasets, and (iv) backbone architectures. We draw a series of intriguing observations from this study, e.g., we discover that encouraging long-spanned persistency can be effective even if the timespan is 60 seconds. In addition to state-of-the-art results in multiple benchmarks, we report a few promising cases in which unsupervised pre-training can outperform its supervised counterpart. Code is made available at //github.com/facebookresearch/SlowFast