亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For both public and private firms, comparable companies' analysis is widely used as a method for company valuation. In particular, the method is of great value for valuation of private equity companies. The several approaches to the comparable companies' method usually rely on a qualitative approach to identifying similar peer companies, which tend to use established industry classification schemes and/or analyst intuition and knowledge. However, more quantitative methods have started being used in the literature and in the private equity industry, in particular, machine learning clustering, and natural language processing (NLP). For NLP methods, the process consists of extracting product entities from e.g., the company's website or company descriptions from some financial database system and then to perform similarity analysis. Here, using companies' descriptions/summaries from publicly available companies' Wikipedia websites, we show that using large language models (LLMs), such as GPT from OpenAI, has a much higher precision and success rate than using the standard named entity recognition (NER) methods which use manual annotation. We demonstrate quantitatively a higher precision rate, and show that, qualitatively, it can be used to create appropriate comparable companies peer groups which could then be used for equity valuation.

相關內容

We combine Kronecker products, and quantitative information flow, to give a novel formal analysis for the fine-grained verification of utility in complex privacy pipelines. The combination explains a surprising anomaly in the behaviour of utility of privacy-preserving pipelines -- that sometimes a reduction in privacy results also in a decrease in utility. We use the standard measure of utility for Bayesian analysis, introduced by Ghosh at al., to produce tractable and rigorous proofs of the fine-grained statistical behaviour leading to the anomaly. More generally, we offer the prospect of formal-analysis tools for utility that complement extant formal analyses of privacy. We demonstrate our results on a number of common privacy-preserving designs.

Many networks can be characterised by the presence of communities, which are groups of units that are closely linked and can be relevant in understanding the system's overall function. Recently, hypergraphs have emerged as a fundamental tool for modelling systems where interactions are not limited to pairs but may involve an arbitrary number of nodes. Using a dual approach to community detection, in this study we extend the concept of link communities to hypergraphs, allowing us to extract informative clusters of highly related hyperedges. We analyze the dendrograms obtained by applying hierarchical clustering to distance matrices among hyperedges on a variety of real-world data, showing that hyperlink communities naturally highlight the hierarchical and multiscale structure of higher-order networks. Moreover, by using hyperlink communities, we are able to extract overlapping memberships from nodes, overcoming limitations of traditional hard clustering methods. Finally, we introduce higher-order network cartography as a practical tool for categorizing nodes into different structural roles based on their interaction patterns and community participation. This approach helps identify different types of individuals in a variety of real-world social systems. Our work contributes to a better understanding of the structural organization of real-world higher-order systems.

Hesitant fuzzy sets are widely used in the instances of uncertainty and hesitation. The inclusion relationship is an important and foundational definition for sets. Hesitant fuzzy set, as a kind of set, needs explicit definition of inclusion relationship. Base on the hesitant fuzzy membership degree of discrete form, several kinds of inclusion relationships for hesitant fuzzy sets are proposed. And then some foundational propositions of hesitant fuzzy sets and the families of hesitant fuzzy sets are presented. Finally, some foundational propositions of hesitant fuzzy information systems with respect to parameter reductions are put forward, and an example and an algorithm are given to illustrate the processes of parameter reductions.

Block majorization-minimization (BMM) is a simple iterative algorithm for nonconvex constrained optimization that sequentially minimizes majorizing surrogates of the objective function in each block coordinate while the other coordinates are held fixed. BMM entails a large class of optimization algorithms such as block coordinate descent and its proximal-point variant, expectation-minimization, and block projected gradient descent. We establish that for general constrained nonconvex optimization, BMM with strongly convex surrogates can produce an $\epsilon$-stationary point within $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$ iterations and asymptotically converges to the set of stationary points. Furthermore, we propose a trust-region variant of BMM that can handle surrogates that are only convex and still obtain the same iteration complexity and asymptotic stationarity. These results hold robustly even when the convex sub-problems are inexactly solved as long as the optimality gaps are summable. As an application, we show that a regularized version of the celebrated multiplicative update algorithm for nonnegative matrix factorization by Lee and Seung has iteration complexity of $O(\epsilon^{-2}(\log \epsilon^{-1})^{2})$. The same result holds for a wide class of regularized nonnegative tensor decomposition algorithms as well as the classical block projected gradient descent algorithm. These theoretical results are validated through various numerical experiments.

We consider twisted permutation codes, a class of frequency permutation arrays obtained from finite groups with multiple permutation representations of the same degree, introduced by Gillespie, Praeger and Spiga (and later studied by Akbari, Gillespie and Praeger), and develop a decoding algorithm for such codes based on earlier work of the first author for permutation group codes. In particular, we show how to implement this algorithm for an infinite family of groups considered by Akbari, Gillespie and Praeger.

Completely random measures (CRMs) and their normalizations (NCRMs) offer flexible models in Bayesian nonparametrics. But their infinite dimensionality presents challenges for inference. Two popular finite approximations are truncated finite approximations (TFAs) and independent finite approximations (IFAs). While the former have been well-studied, IFAs lack similarly general bounds on approximation error, and there has been no systematic comparison between the two options. In the present work, we propose a general recipe to construct practical finite-dimensional approximations for homogeneous CRMs and NCRMs, in the presence or absence of power laws. We call our construction the automated independent finite approximation (AIFA). Relative to TFAs, we show that AIFAs facilitate more straightforward derivations and use of parallel computing in approximate inference. We upper bound the approximation error of AIFAs for a wide class of common CRMs and NCRMs -- and thereby develop guidelines for choosing the approximation level. Our lower bounds in key cases suggest that our upper bounds are tight. We prove that, for worst-case choices of observation likelihoods, TFAs are more efficient than AIFAs. Conversely, we find that in real-data experiments with standard likelihoods, AIFAs and TFAs perform similarly. Moreover, we demonstrate that AIFAs can be used for hyperparameter estimation even when other potential IFA options struggle or do not apply.

We define and study the model of patterned non-determinism in bipartite communication complexity, denoted by $PNP^{X\leftrightarrow Y}$. It generalises the known models $UP^{X\leftrightarrow Y}$ and $FewP^{X\leftrightarrow Y}$ through relaxing the constraints on the witnessing structure of the underlying $NP^{X\leftrightarrow Y}$-protocol. It is shown that for the case of total functions $PNP^{X\leftrightarrow Y}$ equals $P^{X\leftrightarrow Y}$ (similarly to $UP^{X\leftrightarrow Y}$ and $FewP^{X\leftrightarrow Y}$). Moreover, the corresponding exhaustive witness-searching problem -- determining the full set of witnesses that lead to the acceptance of a given input pair -- also has an efficient deterministic protocol. The possibility of efficient exhaustive $PNP^{X\leftrightarrow Y}$-search is used to analyse certain three-party communication regime (under the "number in hand" input partition): The corresponding three-party model is shown to be as strong qualitatively as the weakest among its two-party amplifications obtained by allowing free communication between a pair of players.

We study stability properties of the expected utility function in Bayesian optimal experimental design. We provide a framework for this problem in a non-parametric setting and prove a convergence rate of the expected utility with respect to a likelihood perturbation. This rate is uniform over the design space and its sharpness in the general setting is demonstrated by proving a lower bound in a special case. To make the problem more concrete we proceed by considering non-linear Bayesian inverse problems with Gaussian likelihood and prove that the assumptions set out for the general case are satisfied and regain the stability of the expected utility with respect to perturbations to the observation map. Theoretical convergence rates are demonstrated numerically in three different examples.

The synthesis of information deriving from complex networks is a topic receiving increasing relevance in ecology and environmental sciences. In particular, the aggregation of multilayer networks, i.e. network structures formed by multiple interacting networks (the layers), constitutes a fast-growing field. In several environmental applications, the layers of a multilayer network are modelled as a collection of similarity matrices describing how similar pairs of biological entities are, based on different types of features (e.g. biological traits). The present paper first discusses two main techniques for combining the multi-layered information into a single network (the so-called monoplex), i.e. Similarity Network Fusion (SNF) and Similarity Matrix Average (SMA). Then, the effectiveness of the two methods is tested on a real-world dataset of the relative abundance of microbial species in the ecosystems of nine glaciers (four glaciers in the Alps and five in the Andes). A preliminary clustering analysis on the monoplexes obtained with different methods shows the emergence of a tightly connected community formed by species that are typical of cryoconite holes worldwide. Moreover, the weights assigned to different layers by the SMA algorithm suggest that two large South American glaciers (Exploradores and Perito Moreno) are structurally different from the smaller glaciers in both Europe and South America. Overall, these results highlight the importance of integration methods in the discovery of the underlying organizational structure of biological entities in multilayer ecological networks.

We establish conditions under which latent causal graphs are nonparametrically identifiable and can be reconstructed from unknown interventions in the latent space. Our primary focus is the identification of the latent structure in measurement models without parametric assumptions such as linearity or Gaussianity. Moreover, we do not assume the number of hidden variables is known, and we show that at most one unknown intervention per hidden variable is needed. This extends a recent line of work on learning causal representations from observations and interventions. The proofs are constructive and introduce two new graphical concepts -- imaginary subsets and isolated edges -- that may be useful in their own right. As a matter of independent interest, the proofs also involve a novel characterization of the limits of edge orientations within the equivalence class of DAGs induced by unknown interventions. These are the first results to characterize the conditions under which causal representations are identifiable without making any parametric assumptions in a general setting with unknown interventions and without faithfulness.

北京阿比特科技有限公司