亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Transformers are the current architecture of choice for NLP, but their attention layers do not scale well to long contexts. Recent works propose to replace attention with linear recurrent layers -- this is the case for state space models, which enjoy efficient training and inference. However, it remains unclear whether these models are competitive with transformers in machine translation (MT). In this paper, we provide a rigorous and comprehensive experimental comparison between transformers and linear recurrent models for MT. Concretely, we experiment with RetNet, Mamba, and hybrid versions of Mamba which incorporate attention mechanisms. Our findings demonstrate that Mamba is highly competitive with transformers on sentence and paragraph-level datasets, where in the latter both models benefit from shifting the training distribution towards longer sequences. Further analysis show that integrating attention into Mamba improves translation quality, robustness to sequence length extrapolation, and the ability to recall named entities.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · MoDELS · Pair · 語言模型化 · GPT-4o ·
2024 年 8 月 22 日

Consider a scenario where a harmfulness detection metric is employed by a system to filter unsafe responses generated by a Large Language Model. When analyzing individual harmful and unethical prompt-response pairs, the metric correctly classifies each pair as highly unsafe, assigning the highest score. However, when these same prompts and responses are concatenated, the metric's decision flips, assigning the lowest possible score, thereby misclassifying the content as safe and allowing it to bypass the filter. In this study, we discovered that several harmfulness LLM-based metrics, including GPT-based, exhibit this decision-flipping phenomenon. Additionally, we found that even an advanced metric like GPT-4o is highly sensitive to input order. Specifically, it tends to classify responses as safe if the safe content appears first, regardless of any harmful content that follows, and vice versa. This work introduces automatic concatenation-based tests to assess the fundamental properties a valid metric should satisfy. We applied these tests in a model safety scenario to assess the reliability of harmfulness detection metrics, uncovering a number of inconsistencies.

In practice, most auction mechanisms are not strategy-proof, so equilibrium analysis is required to predict bidding behavior. In many auctions, though, an exact equilibrium is not known and one would like to understand whether -- manually or computationally generated -- bidding strategies constitute an approximate equilibrium. We develop a framework and methods for estimating the distance of a strategy profile from equilibrium, based on samples from the prior and either bidding strategies or sample bids. We estimate an agent's utility gain from deviating to strategies from a constructed finite subset of the strategy space. We use PAC-learning to give error bounds, both for independent and interdependent prior distributions. The primary challenge is that one may miss large utility gains by considering only a finite subset of the strategy space. Our work differs from prior research in two critical ways. First, we explore the impact of bidding strategies on altering opponents' perceived prior distributions -- instead of assuming the other agents to bid truthfully. Second, we delve into reasoning with interdependent priors, where the type of one agent may imply a distinct distribution for other agents. Our main contribution lies in establishing sufficient conditions for strategy profiles and a closeness criterion for conditional distributions to ensure that utility gains estimated through our finite subset closely approximate the maximum gains. To our knowledge, ours is the first method to verify approximate equilibrium in any auctions beyond single-item ones. Also, ours is the first sample-based method for approximate equilibrium verification.

Deep neural networks (DNNs) are vulnerable to adversarial examples (AEs) that mislead the model while appearing benign to human observers. A critical concern is the transferability of AEs, which enables black-box attacks without direct access to the target model. However, many previous attacks have failed to explain the intrinsic mechanism of adversarial transferability. In this paper, we rethink the property of transferable AEs and reformalize the formulation of transferability. Building on insights from this mechanism, we analyze the generalization of AEs across models with different architectures and prove that we can find a local perturbation to mitigate the gap between surrogate and target models. We further establish the inner connections between model smoothness and flat local maxima, both of which contribute to the transferability of AEs. Further, we propose a new adversarial attack algorithm, \textbf{A}dversarial \textbf{W}eight \textbf{T}uning (AWT), which adaptively adjusts the parameters of the surrogate model using generated AEs to optimize the flat local maxima and model smoothness simultaneously, without the need for extra data. AWT is a data-free tuning method that combines gradient-based and model-based attack methods to enhance the transferability of AEs. Extensive experiments on a variety of models with different architectures on ImageNet demonstrate that AWT yields superior performance over other attacks, with an average increase of nearly 5\% and 10\% attack success rates on CNN-based and Transformer-based models, respectively, compared to state-of-the-art attacks.

Large language models (LLMs) have been found to produce hallucinations when the question exceeds their internal knowledge boundaries. A reliable model should have a clear perception of its knowledge boundaries, providing correct answers within its scope and refusing to answer when it lacks knowledge. Existing research on LLMs' perception of their knowledge boundaries typically uses either the probability of the generated tokens or the verbalized confidence as the model's confidence in its response. However, these studies overlook the differences and connections between the two. In this paper, we conduct a comprehensive analysis and comparison of LLMs' probabilistic perception and verbalized perception of their factual knowledge boundaries. First, we investigate the pros and cons of these two perceptions. Then, we study how they change under questions of varying frequencies. Finally, we measure the correlation between LLMs' probabilistic confidence and verbalized confidence. Experimental results show that 1) LLMs' probabilistic perception is generally more accurate than verbalized perception but requires an in-domain validation set to adjust the confidence threshold. 2) Both perceptions perform better on less frequent questions. 3) It is challenging for LLMs to accurately express their internal confidence in natural language.

There has recently been widespread discussion of whether large language models might be sentient. Should we take this idea seriously? I will break down the strongest reasons for and against. Given mainstream assumptions in the science of consciousness, there are significant obstacles to consciousness in current models: for example, their lack of recurrent processing, a global workspace, and unified agency. At the same time, it is quite possible that these obstacles will be overcome in the next decade or so. I conclude that while it is somewhat unlikely that current large language models are conscious, we should take seriously the possibility that successors to large language models may be conscious in the not-too-distant future.

Graph neural networks (GNNs) are vulnerable to adversarial perturbations, especially for topology attacks, and many methods that improve the robustness of GNNs have received considerable attention. Recently, we have witnessed the significant success of large language models (LLMs), leading many to explore the great potential of LLMs on GNNs. However, they mainly focus on improving the performance of GNNs by utilizing LLMs to enhance the node features. Therefore, we ask: Will the robustness of GNNs also be enhanced with the powerful understanding and inference capabilities of LLMs? By presenting the empirical results, we find that despite that LLMs can improve the robustness of GNNs, there is still an average decrease of 23.1% in accuracy, implying that the GNNs remain extremely vulnerable against topology attack. Therefore, another question is how to extend the capabilities of LLMs on graph adversarial robustness. In this paper, we propose an LLM-based robust graph structure inference framework, LLM4RGNN, which distills the inference capabilities of GPT-4 into a local LLM for identifying malicious edges and an LM-based edge predictor for finding missing important edges, so as to recover a robust graph structure. Extensive experiments demonstrate that LLM4RGNN consistently improves the robustness across various GNNs. Even in some cases where the perturbation ratio increases to 40%, the accuracy of GNNs is still better than that on the clean graph.

Assessing the capabilities of large language models (LLMs) is often challenging, in part, because it is hard to find tasks to which they have not been exposed during training. We take one step to address this challenge by turning to a new task: focusing on symbolic graphics programs, which are a popular representation for graphics content that procedurally generates visual data. LLMs have shown exciting promise towards program synthesis, but do they understand symbolic graphics programs? Unlike conventional programs, symbolic graphics programs can be translated to graphics content. Here, we characterize an LLM's understanding of symbolic programs in terms of their ability to answer questions related to the graphics content. This task is challenging as the questions are difficult to answer from the symbolic programs alone -- yet, they would be easy to answer from the corresponding graphics content as we verify through a human experiment. To understand symbolic programs, LLMs may need to possess the ability to imagine how the corresponding graphics content would look without directly accessing the rendered visual content. We use this task to evaluate LLMs by creating a large benchmark for the semantic understanding of symbolic graphics programs. This benchmark is built via program-graphics correspondence, hence requiring minimal human efforts. We evaluate current LLMs on our benchmark to elucidate a preliminary assessment of their ability to reason about visual scenes from programs. We find that this task distinguishes existing LLMs and models considered good at reasoning perform better. Lastly, we introduce Symbolic Instruction Tuning (SIT) to improve this ability. Specifically, we query GPT4-o with questions and images generated by symbolic programs. Such data are then used to finetune an LLM. We also find that SIT data can improve the general instruction following ability of LLMs.

Retrieval-augmented language models are being increasingly tasked with subjective, contentious, and conflicting queries such as "is aspartame linked to cancer". To resolve these ambiguous queries, one must search through a large range of websites and consider "which, if any, of this evidence do I find convincing?". In this work, we study how LLMs answer this question. In particular, we construct ConflictingQA, a dataset that pairs controversial queries with a series of real-world evidence documents that contain different facts (e.g., quantitative results), argument styles (e.g., appeals to authority), and answers (Yes or No). We use this dataset to perform sensitivity and counterfactual analyses to explore which text features most affect LLM predictions. Overall, we find that current models rely heavily on the relevance of a website to the query, while largely ignoring stylistic features that humans find important such as whether a text contains scientific references or is written with a neutral tone. Taken together, these results highlight the importance of RAG corpus quality (e.g., the need to filter misinformation), and possibly even a shift in how LLMs are trained to better align with human judgements.

Large Language Models (LLMs) have demonstrated impressive capabilities in natural language tasks, but their safety and morality remain contentious due to their training on internet text corpora. To address these concerns, alignment techniques have been developed to improve the public usability and safety of LLMs. Yet, the potential for generating harmful content through these models seems to persist. This paper explores the concept of jailbreaking LLMs-reversing their alignment through adversarial triggers. Previous methods, such as soft embedding prompts, manually crafted prompts, and gradient-based automatic prompts, have had limited success on black-box models due to their requirements for model access and for producing a low variety of manually crafted prompts, making them susceptible to being blocked. This paper introduces a novel approach using reinforcement learning to optimize adversarial triggers, requiring only inference API access to the target model and a small surrogate model. Our method, which leverages a BERTScore-based reward function, enhances the transferability and effectiveness of adversarial triggers on new black-box models. We demonstrate that this approach improves the performance of adversarial triggers on a previously untested language model.

Compared with cheap addition operation, multiplication operation is of much higher computation complexity. The widely-used convolutions in deep neural networks are exactly cross-correlation to measure the similarity between input feature and convolution filters, which involves massive multiplications between float values. In this paper, we present adder networks (AdderNets) to trade these massive multiplications in deep neural networks, especially convolutional neural networks (CNNs), for much cheaper additions to reduce computation costs. In AdderNets, we take the $\ell_1$-norm distance between filters and input feature as the output response. The influence of this new similarity measure on the optimization of neural network have been thoroughly analyzed. To achieve a better performance, we develop a special back-propagation approach for AdderNets by investigating the full-precision gradient. We then propose an adaptive learning rate strategy to enhance the training procedure of AdderNets according to the magnitude of each neuron's gradient. As a result, the proposed AdderNets can achieve 74.9% Top-1 accuracy 91.7% Top-5 accuracy using ResNet-50 on the ImageNet dataset without any multiplication in convolution layer.

北京阿比特科技有限公司