亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the increasing availability and affordability of personal robots, they will no longer be confined to large corporate warehouses or factories but will instead be expected to operate in less controlled environments alongside larger groups of people. In addition to ensuring safety and efficiency, it is crucial to minimize any negative psychological impact robots may have on humans and follow unwritten social norms in these situations. Our research aims to develop a model that can predict the movements of pedestrians and perceptually-social groups in crowded environments. We introduce a new Social Group Long Short-term Memory (SG-LSTM) model that models human groups and interactions in dense environments using a socially-aware LSTM to produce more accurate trajectory predictions. Our approach enables navigation algorithms to calculate collision-free paths faster and more accurately in crowded environments. Additionally, we also release a large video dataset with labeled pedestrian groups for the broader social navigation community. We show comparisons with different metrics on different datasets (ETH, Hotel, MOT15) and different prediction approaches (LIN, LSTM, O-LSTM, S-LSTM) as well as runtime performance.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · Extensibility · Automator · motivation · 值域 ·
2023 年 9 月 27 日

Moving Target Defense and Cyber Deception emerged in recent years as two key proactive cyber defense approaches, contrasting with the static nature of the traditional reactive cyber defense. The key insight behind these approaches is to impose an asymmetric disadvantage for the attacker by using deception and randomization techniques to create a dynamic attack surface. Moving Target Defense typically relies on system randomization and diversification, while Cyber Deception is based on decoy nodes and fake systems to deceive attackers. However, current Moving Target Defense techniques are complex to manage and can introduce high overheads, while Cyber Deception nodes are easily recognized and avoided by adversaries. This paper presents DOLOS, a novel architecture that unifies Cyber Deception and Moving Target Defense approaches. DOLOS is motivated by the insight that deceptive techniques are much more powerful when integrated into production systems rather than deployed alongside them. DOLOS combines typical Moving Target Defense techniques, such as randomization, diversity, and redundancy, with cyber deception and seamlessly integrates them into production systems through multiple layers of isolation. We extensively evaluate DOLOS against a wide range of attackers, ranging from automated malware to professional penetration testers, and show that DOLOS is highly effective in slowing down attacks and protecting the integrity of production systems. We also provide valuable insights and considerations for the future development of MTD techniques based on our findings.

In order to assess the risks of a network system, it is important to investigate the behaviors of attackers after successful exploitation, which is called post-exploitation. Although there are various efficient tools supporting post-exploitation implementation, no application can automate this process. Most of the steps of this process are completed by experts who have profound knowledge of security, known as penetration testers or pen-testers. To this end, our study proposes the Raij\=u framework, a Reinforcement Learning (RL)-driven automation approach that assists pen-testers in quickly implementing the process of post-exploitation for security-level evaluation in network systems. We implement two RL algorithms, Advantage Actor-Critic (A2C) and Proximal Policy Optimization (PPO), to train specialized agents capable of making intelligent actions, which are Metasploit modules to automatically launch attacks of privileges escalation, gathering hashdump, and lateral movement. By leveraging RL, we aim to empower these agents with the ability to autonomously select and execute actions that can exploit vulnerabilities in target systems. This approach allows us to automate certain aspects of the penetration testing workflow, making it more efficient and responsive to emerging threats and vulnerabilities. The experiments are performed in four real environments with agents trained in thousands of episodes. The agents automatically select actions and launch attacks on the environments and achieve over 84\% of successful attacks with under 55 attack steps given. Moreover, the A2C algorithm has proved extremely effective in the selection of proper actions for automation of post-exploitation.

In the investment industry, it is often essential to carry out fine-grained company similarity quantification for a range of purposes, including market mapping, competitor analysis, and mergers and acquisitions. We propose and publish a knowledge graph, named CompanyKG, to represent and learn diverse company features and relations. Specifically, 1.17 million companies are represented as nodes enriched with company description embeddings; and 15 different inter-company relations result in 51.06 million weighted edges. To enable a comprehensive assessment of methods for company similarity quantification, we have devised and compiled three evaluation tasks with annotated test sets: similarity prediction, competitor retrieval and similarity ranking. We present extensive benchmarking results for 11 reproducible predictive methods categorized into three groups: node-only, edge-only, and node+edge. To the best of our knowledge, CompanyKG is the first large-scale heterogeneous graph dataset originating from a real-world investment platform, tailored for quantifying inter-company similarity.

Despite the recent advancements in speech recognition, there are still difficulties in accurately transcribing conversational and emotional speech in noisy and reverberant acoustic environments. This poses a particular challenge in the search and rescue (SAR) domain, where transcribing conversations among rescue team members is crucial to support real-time decision-making. The scarcity of speech data and associated background noise in SAR scenarios make it difficult to deploy robust speech recognition systems. To address this issue, we have created and made publicly available a German speech dataset called RescueSpeech. This dataset includes real speech recordings from simulated rescue exercises. Additionally, we have released competitive training recipes and pre-trained models. Our study highlights that the performance attained by state-of-the-art methods in this challenging scenario is still far from reaching an acceptable level.

Unsupervised anomaly localization, which plays a critical role in industrial manufacturing, is to identify anomalous regions that deviate from patterns established exclusively from nominal samples. Recent mainstream methods focus on approximating the target feature distribution by leveraging embeddings from ImageNet models. However, a common issue in many anomaly localization methods is the lack of adaptability of the feature approximations to specific targets. Consequently, their ability to effectively identify anomalous regions relies significantly on the data coverage provided by the finite resources in a memory bank. In this paper, we propose a novel subspace-aware feature reconstruction framework for anomaly localization. To achieve adaptive feature approximation, our proposed method involves the reconstruction of the feature representation through the self-expressive model designed to learn low-dimensional subspaces. Importantly, the sparsity of the subspace representation contributes to covering feature patterns from the same subspace with fewer resources, leading to a reduction in the memory bank. Extensive experiments across three industrial benchmark datasets demonstrate that our approach achieves competitive anomaly localization performance compared to state-of-the-art methods by adaptively reconstructing target features with a small number of samples.

While anonymity networks like Tor aim to protect the privacy of their users, they are vulnerable to traffic analysis attacks such as Website Fingerprinting (WF) and Flow Correlation (FC). Recent implementations of WF and FC attacks, such as Tik-Tok and DeepCoFFEA, have shown that the attacks can be effectively carried out, threatening user privacy. Consequently, there is a need for effective traffic analysis defense. There are a variety of existing defenses, but most are either ineffective, incur high latency and bandwidth overhead, or require additional infrastructure. As a result, we aim to design a traffic analysis defense that is efficient and highly resistant to both WF and FC attacks. We propose DeTorrent, which uses competing neural networks to generate and evaluate traffic analysis defenses that insert 'dummy' traffic into real traffic flows. DeTorrent operates with moderate overhead and without delaying traffic. In a closed-world WF setting, it reduces an attacker's accuracy by 61.5%, a reduction 10.5% better than the next-best padding-only defense. Against the state-of-the-art FC attacker, DeTorrent reduces the true positive rate for a $10^{-5}$ false positive rate to about .12, which is less than half that of the next-best defense. We also demonstrate DeTorrent's practicality by deploying it alongside the Tor network and find that it maintains its performance when applied to live traffic.

Choosing an appropriate representation of the environment for the underlying decision-making process of the RL agent is not always straightforward. The state representation should be inclusive enough to allow the agent to informatively decide on its actions and compact enough to increase sample efficiency for policy training. Given this outlook, this work examines the effect of various state representations in incentivizing the agent to solve a specific robotic task: antipodal and planar object grasping. A continuum of state representation abstractions is defined, starting from a model-based approach with complete system knowledge, through hand-crafted numerical, to image-based representations with decreasing level of induced task-specific knowledge. We examine the effects of each representation in the ability of the agent to solve the task in simulation and the transferability of the learned policy to the real robot. The results show that RL agents using numerical states can perform on par with non-learning baselines. Furthermore, we find that agents using image-based representations from pre-trained environment embedding vectors perform better than end-to-end trained agents, and hypothesize that task-specific knowledge is necessary for achieving convergence and high success rates in robot control.

Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.

Knowledge graphs are important resources for many artificial intelligence tasks but often suffer from incompleteness. In this work, we propose to use pre-trained language models for knowledge graph completion. We treat triples in knowledge graphs as textual sequences and propose a novel framework named Knowledge Graph Bidirectional Encoder Representations from Transformer (KG-BERT) to model these triples. Our method takes entity and relation descriptions of a triple as input and computes scoring function of the triple with the KG-BERT language model. Experimental results on multiple benchmark knowledge graphs show that our method can achieve state-of-the-art performance in triple classification, link prediction and relation prediction tasks.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

北京阿比特科技有限公司