亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Researchers are exploring novel computational paradigms such as sparse coding and neuromorphic computing to bridge the efficiency gap between the human brain and conventional computers in complex tasks. A key area of focus is neuromorphic audio processing. While the Locally Competitive Algorithm has emerged as a promising solution for sparse coding, offering potential for real-time and low-power processing on neuromorphic hardware, its applications in neuromorphic speech classification have not been thoroughly studied. The Adaptive Locally Competitive Algorithm builds upon the Locally Competitive Algorithm by dynamically adjusting the modulation parameters of the filter bank to fine-tune the filters' sensitivity. This adaptability enhances lateral inhibition, improving reconstruction quality, sparsity, and convergence time, which is crucial for real-time applications. This paper demonstrates the potential of the Locally Competitive Algorithm and its adaptive variant as robust feature extractors for neuromorphic speech classification. Results show that the Locally Competitive Algorithm achieves better speech classification accuracy at the expense of higher power consumption compared to the LAUSCHER cochlea model used for benchmarking. On the other hand, the Adaptive Locally Competitive Algorithm mitigates this power consumption issue without compromising the accuracy. The dynamic power consumption is reduced to a range of 4 to 13 milliwatts on neuromorphic hardware, three orders of magnitude less than setups using Graphics Processing Units. These findings position the Adaptive Locally Competitive Algorithm as a compelling solution for efficient speech classification systems, promising substantial advancements in balancing speech classification accuracy and power efficiency.

相關內容

We propose a novel attention mechanism, named Cog Attention, that enables attention weights to be negative for enhanced expressiveness, which stems from two key factors: (1) Cog Attention can shift the token deletion and copying function from a static OV matrix to dynamic QK inner products, with the OV matrix now focusing more on refinement or modification. The attention head can simultaneously delete, copy, or retain tokens by assigning them negative, positive, or minimal attention weights, respectively. As a result, a single attention head becomes more flexible and expressive. (2) Cog Attention improves the model's robustness against representational collapse, which can occur when earlier tokens are over-squashed into later positions, leading to homogeneous representations. Negative weights reduce effective information paths from earlier to later tokens, helping to mitigate this issue. We develop Transformer-like models which use Cog Attention as attention modules, including decoder-only models for language modeling and U-ViT diffusion models for image generation. Experiments show that models using Cog Attention exhibit superior performance compared to those employing traditional softmax attention modules. Our approach suggests a promising research direction for rethinking and breaking the entrenched constraints of traditional softmax attention, such as the requirement for non-negative weights.

In most multiple-input multiple-output (MIMO) communication systems, antennas are spaced at least half a wavelength apart to reduce mutual coupling. In this configuration, the maximum array gain is equal to the number of antennas. However, when the antenna spacing is significantly reduced, the array gain of a compact array can become proportional to the square of the number of antennas, greatly exceeding that of traditional MIMO systems. Achieving this "superdirectivity" requires complex calculations of the excitation coefficients (beamforming vector), which is a challenging task. In this paper, we address this problem with a novel double coupling-based superdirective beamforming method. In particular, we categorize the antenna coupling effects to impedance coupling and field coupling. By characterizing these two coupling in model, we derive the beamforming vector for superdirective arrays. We prove that the field coupling matrix has the unique solution for an antenna array, and itself has the ability to fully characterize the distorted coupling field. Based on this proven theorem, we propose a method that accurately calculates the coupling matrix using only a number of angle sampling points on the order of the number of antennas. Moreover, a prototype of an independently-controlled superdirective antenna array is developed. Full-wave electromagnetic simulations and real-world experiments validate the effectiveness of our proposed approaches, and superdirectivity is achieved in reality by a compact array with 4 and 8 dipole antennas.

Understanding how information can efficiently spread in distributed systems under noisy communications is a fundamental question in both biological research and artificial system design. When agents are able to control whom they interact with, noise can often be mitigated through redundancy or other coding techniques, but it may have fundamentally different consequences on well-mixed systems. Specifically, Boczkowski et al. (2018) considered the noisy $\mathcal{PULL}(h)$ model, where each message can be viewed as any other message with probability $\delta$. The authors proved that in this model, the basic task of propagating a bit value from a single source to the whole population requires $\Omega(\frac{n\delta}{h(1-\delta|\Sigma|)^2})$ (parallel) rounds. The current work shows that the aforementioned lower bound is almost tight. In particular, when each agent observes all other agents in each round, which relates to scenarios where each agent senses the system's average tendency, information spreading can reliably be achieved in $\mathcal{O}(\log n)$ time, assuming constant noise. We present two simple and highly efficient protocols, thus suggesting their applicability to real-life scenarios. Notably, they also work in the presence of multiple conflicting sources and efficiently converge to their plurality opinion. The first protocol we present uses 1-bit messages but relies on a simultaneous wake-up assumption. By increasing the message size to 2 bits and removing the speedup in the information spreading time that may result from having multiple sources, we also present a simple and highly efficient self-stabilizing protocol that avoids the simultaneous wake-up requirement. Overall, our results demonstrate how, under stochastic communication, increasing the sample size can compensate for the lack of communication structure by linearly accelerating information spreading time.

Quantum error-correcting codes (QECCs) are necessary for fault-tolerant quantum computation. Surface codes are a class of topological QECCs that have attracted significant attention due to their exceptional error-correcting capabilities and easy implementation. In the decoding process of surface codes, the syndromes are crucial for error correction, however, they are not always correctly measured. Most of the existing decoding algorithms for surface codes need extra measurements to correct syndromes with errors, which implies a potential increase in inference complexity and decoding latency. In this paper, we propose a high-performance list decoding algorithm for surface codes with erroneous syndromes, where syndrome soft information is incorporated in the decoding, allowing qubits and syndrome to be recovered without needing extra measurements. Precisely, we first use belief propagation (BP) decoding for pre-processing with syndrome soft information, followed by ordered statistics decoding (OSD) for post-processing to list and recover both qubits and syndromes. Numerical results demonstrate that our proposed algorithm efficiently recovers erroneous syndromes and significantly improves the decoding performance of surface codes with erroneous syndromes compared to minimum-weight perfect matching (MWPM), BP and original BP-OSD algorithms.

In evolutionary computation, it is commonly assumed that a search algorithm acquires knowledge about a problem instance by sampling solutions from the search space and evaluating them with a fitness function. This is necessarily inefficient because fitness reveals very little about solutions -- yet they contain more information that can be potentially exploited. To address this observation in genetic programming, we propose EvoNUDGE, which uses a graph neural network to elicit additional knowledge from symbolic regression problems. The network is queried on the problem before an evolutionary run to produce a library of subprograms, which is subsequently used to seed the initial population and bias the actions of search operators. In an extensive experiment on a large number of problem instances, EvoNUDGE is shown to significantly outperform multiple baselines, including the conventional tree-based genetic programming and the purely neural variant of the method.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Incompleteness is a common problem for existing knowledge graphs (KGs), and the completion of KG which aims to predict links between entities is challenging. Most existing KG completion methods only consider the direct relation between nodes and ignore the relation paths which contain useful information for link prediction. Recently, a few methods take relation paths into consideration but pay less attention to the order of relations in paths which is important for reasoning. In addition, these path-based models always ignore nonlinear contributions of path features for link prediction. To solve these problems, we propose a novel KG completion method named OPTransE. Instead of embedding both entities of a relation into the same latent space as in previous methods, we project the head entity and the tail entity of each relation into different spaces to guarantee the order of relations in the path. Meanwhile, we adopt a pooling strategy to extract nonlinear and complex features of different paths to further improve the performance of link prediction. Experimental results on two benchmark datasets show that the proposed model OPTransE performs better than state-of-the-art methods.

We examine the problem of question answering over knowledge graphs, focusing on simple questions that can be answered by the lookup of a single fact. Adopting a straightforward decomposition of the problem into entity detection, entity linking, relation prediction, and evidence combination, we explore simple yet strong baselines. On the popular SimpleQuestions dataset, we find that basic LSTMs and GRUs plus a few heuristics yield accuracies that approach the state of the art, and techniques that do not use neural networks also perform reasonably well. These results show that gains from sophisticated deep learning techniques proposed in the literature are quite modest and that some previous models exhibit unnecessary complexity.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

Recently, deep learning has achieved very promising results in visual object tracking. Deep neural networks in existing tracking methods require a lot of training data to learn a large number of parameters. However, training data is not sufficient for visual object tracking as annotations of a target object are only available in the first frame of a test sequence. In this paper, we propose to learn hierarchical features for visual object tracking by using tree structure based Recursive Neural Networks (RNN), which have fewer parameters than other deep neural networks, e.g. Convolutional Neural Networks (CNN). First, we learn RNN parameters to discriminate between the target object and background in the first frame of a test sequence. Tree structure over local patches of an exemplar region is randomly generated by using a bottom-up greedy search strategy. Given the learned RNN parameters, we create two dictionaries regarding target regions and corresponding local patches based on the learned hierarchical features from both top and leaf nodes of multiple random trees. In each of the subsequent frames, we conduct sparse dictionary coding on all candidates to select the best candidate as the new target location. In addition, we online update two dictionaries to handle appearance changes of target objects. Experimental results demonstrate that our feature learning algorithm can significantly improve tracking performance on benchmark datasets.

北京阿比特科技有限公司