We propose a new algorithm for efficiently solving the damped Fisher matrix in large-scale scenarios where the number of parameters significantly exceeds the number of available samples. This problem is fundamental for natural gradient descent and stochastic reconfiguration. Our algorithm is based on Cholesky decomposition and is generally applicable. Benchmark results show that the algorithm is significantly faster than existing methods.
The field of computational pathology has witnessed remarkable progress in the development of both task-specific predictive models and task-agnostic self-supervised vision encoders. However, despite the explosive growth of generative artificial intelligence (AI), there has been limited study on building general purpose, multimodal AI assistants tailored to pathology. Here we present PathChat, a vision-language generalist AI assistant for human pathology using an in-house developed foundational vision encoder pretrained on 100 million histology images from over 100,000 patient cases and 1.18 million pathology image-caption pairs. The vision encoder is then combined with a pretrained large language model and the whole system is finetuned on over 250,000 diverse disease agnostic visual language instructions. We compare PathChat against several multimodal vision language AI assistants as well as GPT4V, which powers the commercially available multimodal general purpose AI assistant ChatGPT-4. When relevant clinical context is provided with the histology image, PathChat achieved a diagnostic accuracy of 87% on multiple-choice questions based on publicly available cases of diverse tissue origins and disease models. Additionally, using open-ended questions and human expert evaluation, we found that overall PathChat produced more accurate and pathologist-preferable responses to diverse queries related to pathology. As an interactive and general vision language AI assistant that can flexibly handle both visual and natural language inputs, PathChat can potentially find impactful applications in pathology education, research, and human-in-the-loop clinical decision making.
Gamma-Phi losses constitute a family of multiclass classification loss functions that generalize the logistic and other common losses, and have found application in the boosting literature. We establish the first general sufficient condition for the classification-calibration (CC) of such losses. To our knowledge, this sufficient condition gives the first family of nonconvex multiclass surrogate losses for which CC has been fully justified. In addition, we show that a previously proposed sufficient condition is in fact not sufficient. This contribution highlights a technical issue that is important in the study of multiclass CC but has been neglected in prior work.
With the strong robusticity on illumination variations, near-infrared (NIR) can be an effective and essential complement to visible (VIS) facial expression recognition in low lighting or complete darkness conditions. However, facial expression recognition (FER) from NIR images presents more challenging problem than traditional FER due to the limitations imposed by the data scale and the difficulty of extracting discriminative features from incomplete visible lighting contents. In this paper, we give the first attempt to deep NIR facial expression recognition and proposed a novel method called near-infrared facial expression transformer (NFER-Former). Specifically, to make full use of the abundant label information in the field of VIS, we introduce a Self-Attention Orthogonal Decomposition mechanism that disentangles the expression information and spectrum information from the input image, so that the expression features can be extracted without the interference of spectrum variation. We also propose a Hypergraph-Guided Feature Embedding method that models some key facial behaviors and learns the structure of the complex correlations between them, thereby alleviating the interference of inter-class similarity. Additionally, we have constructed a large NIR-VIS Facial Expression dataset that includes 360 subjects to better validate the efficiency of NFER-Former. Extensive experiments and ablation studies show that NFER-Former significantly improves the performance of NIR FER and achieves state-of-the-art results on the only two available NIR FER datasets, Oulu-CASIA and Large-HFE.
Recently, neural networks have been extensively employed to solve partial differential equations (PDEs) in physical system modeling. While major studies focus on learning system evolution on predefined static mesh discretizations, some methods utilize reinforcement learning or supervised learning techniques to create adaptive and dynamic meshes, due to the dynamic nature of these systems. However, these approaches face two primary challenges: (1) the need for expensive optimal mesh data, and (2) the change of the solution space's degree of freedom and topology during mesh refinement. To address these challenges, this paper proposes a neural PDE solver with a neural mesh adapter. To begin with, we introduce a novel data-free neural mesh adaptor, called Data-free Mesh Mover (DMM), with two main innovations. Firstly, it is an operator that maps the solution to adaptive meshes and is trained using the Monge-Ampere equation without optimal mesh data. Secondly, it dynamically changes the mesh by moving existing nodes rather than adding or deleting nodes and edges. Theoretical analysis shows that meshes generated by DMM have the lowest interpolation error bound. Based on DMM, to efficiently and accurately model dynamic systems, we develop a moving mesh based neural PDE solver (MM-PDE) that embeds the moving mesh with a two-branch architecture and a learnable interpolation framework to preserve information within the data. Empirical experiments demonstrate that our method generates suitable meshes and considerably enhances accuracy when modeling widely considered PDE systems.
We derive optimality conditions for the optimum sample allocation problem in stratified sampling, formulated as the determination of the fixed strata sample sizes that minimize the total cost of the survey, under the assumed level of variance of the stratified $\pi$ estimator of the population total (or mean) and one-sided upper bounds imposed on sample sizes in strata. In this context, we presume that the variance function is of some generic form that, in particular, covers the case of the simple random sampling without replacement design in strata. The optimality conditions mentioned above will be derived from the Karush-Kuhn-Tucker conditions. Based on the established optimality conditions, we provide a formal proof of the optimality of the existing procedure, termed here as LRNA, which solves the allocation problem considered. We formulate the LRNA in such a way that it also provides the solution to the classical optimum allocation problem (i.e. minimization of the estimator's variance under a fixed total cost) under one-sided lower bounds imposed on sample sizes in strata. In this context, the LRNA can be considered as a counterparty to the popular recursive Neyman allocation procedure that is used to solve the classical problem of an optimum sample allocation with added one-sided upper bounds. Ready-to-use R-implementation of the LRNA is available through our stratallo package, which is published on the Comprehensive R Archive Network (CRAN) package repository.
The multiobjective evolutionary optimization algorithm (MOEA) is a powerful approach for tackling multiobjective optimization problems (MOPs), which can find a finite set of approximate Pareto solutions in a single run. However, under mild regularity conditions, the Pareto optimal set of a continuous MOP could be a low dimensional continuous manifold that contains infinite solutions. In addition, structure constraints on the whole optimal solution set, which characterize the patterns shared among all solutions, could be required in many real-life applications. It is very challenging for existing finite population based MOEAs to handle these structure constraints properly. In this work, we propose the first model-based algorithmic framework to learn the whole solution set with structure constraints for multiobjective optimization. In our approach, the Pareto optimality can be traded off with a preferred structure among the whole solution set, which could be crucial for many real-world problems. We also develop an efficient evolutionary learning method to train the set model with structure constraints. Experimental studies on benchmark test suites and real-world application problems demonstrate the promising performance of our proposed framework.
Coupled partial differential equations (PDEs) are key tasks in modeling the complex dynamics of many physical processes. Recently, neural operators have shown the ability to solve PDEs by learning the integral kernel directly in Fourier/Wavelet space, so the difficulty for solving the coupled PDEs depends on dealing with the coupled mappings between the functions. Towards this end, we propose a \textit{coupled multiwavelets neural operator} (CMWNO) learning scheme by decoupling the coupled integral kernels during the multiwavelet decomposition and reconstruction procedures in the Wavelet space. The proposed model achieves significantly higher accuracy compared to previous learning-based solvers in solving the coupled PDEs including Gray-Scott (GS) equations and the non-local mean field game (MFG) problem. According to our experimental results, the proposed model exhibits a $2\times \sim 4\times$ improvement relative $L$2 error compared to the best results from the state-of-the-art models.
Multicalibration is a notion of fairness for predictors that requires them to provide calibrated predictions across a large set of protected groups. Multicalibration is known to be a distinct goal than loss minimization, even for simple predictors such as linear functions. In this work, we consider the setting where the protected groups can be represented by neural networks of size $k$, and the predictors are neural networks of size $n > k$. We show that minimizing the squared loss over all neural nets of size $n$ implies multicalibration for all but a bounded number of unlucky values of $n$. We also give evidence that our bound on the number of unlucky values is tight, given our proof technique. Previously, results of the flavor that loss minimization yields multicalibration were known only for predictors that were near the ground truth, hence were rather limited in applicability. Unlike these, our results rely on the expressivity of neural nets and utilize the representation of the predictor.
Time series discords are a useful primitive for time series anomaly detection, and the matrix profile is capable of capturing discord effectively. There exist many research efforts to improve the scalability of discord discovery with respect to the length of time series. However, there is surprisingly little work focused on reducing the time complexity of matrix profile computation associated with dimensionality of a multidimensional time series. In this work, we propose a sketch for discord mining among multi-dimensional time series. After an initial pre-processing of the sketch as fast as reading the data, the discord mining has runtime independent of the dimensionality of the original data. On several real world examples from water treatment and transportation, the proposed algorithm improves the throughput by at least an order of magnitude (50X) and only has minimal impact on the quality of the approximated solution. Additionally, the proposed method can handle the dynamic addition or deletion of dimensions inconsequential overhead. This allows a data analyst to consider "what-if" scenarios in real time while exploring the data.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.