Coupled partial differential equations (PDEs) are key tasks in modeling the complex dynamics of many physical processes. Recently, neural operators have shown the ability to solve PDEs by learning the integral kernel directly in Fourier/Wavelet space, so the difficulty for solving the coupled PDEs depends on dealing with the coupled mappings between the functions. Towards this end, we propose a \textit{coupled multiwavelets neural operator} (CMWNO) learning scheme by decoupling the coupled integral kernels during the multiwavelet decomposition and reconstruction procedures in the Wavelet space. The proposed model achieves significantly higher accuracy compared to previous learning-based solvers in solving the coupled PDEs including Gray-Scott (GS) equations and the non-local mean field game (MFG) problem. According to our experimental results, the proposed model exhibits a $2\times \sim 4\times$ improvement relative $L$2 error compared to the best results from the state-of-the-art models.
In this paper, we concentrate on solving second-order singularly perturbed Fredholm integro-differential equations (SPFIDEs). It is well known that solving these equations analytically is a challenging endeavor because of the presence of boundary and interior layers within the domain. To overcome these challenges, we develop a fitted second-order difference scheme that can capture the layer behavior of the solution accurately and efficiently, which is again, based on the integral identities with exponential basis functions, the composite trapezoidal rule, and an appropriate interpolating quadrature rules with the remainder terms in the integral form on a piecewise uniform mesh. Hence, our numerical method acts as a superior alternative to the existing methods in the literature. Further, using appropriate techniques in error analysis the scheme's convergence and stability have been studied in the discrete max norm. We have provided necessary experimental evidence that corroborates the theoretical results with a high degree of accuracy.
The loss function plays an important role in optimizing the performance of a learning system. A crucial aspect of the loss function is the assignment of sample weights within a mini-batch during loss computation. In the context of continual learning (CL), most existing strategies uniformly treat samples when calculating the loss value, thereby assigning equal weights to each sample. While this approach can be effective in certain standard benchmarks, its optimal effectiveness, particularly in more complex scenarios, remains underexplored. This is particularly pertinent in training "in the wild," such as with self-training, where labeling is automated using a reference model. This paper introduces the Online Meta-learning for Sample Importance (OMSI) strategy that approximates sample weights for a mini-batch in an online CL stream using an inner- and meta-update mechanism. This is done by first estimating sample weight parameters for each sample in the mini-batch, then, updating the model with the adapted sample weights. We evaluate OMSI in two distinct experimental settings. First, we show that OMSI enhances both learning and retained accuracy in a controlled noisy-labeled data stream. Then, we test the strategy in three standard benchmarks and compare it with other popular replay-based strategies. This research aims to foster the ongoing exploration in the area of self-adaptive CL.
Refreshable tactile displays (RTDs) are predicted to soon become a viable option for the provision of accessible graphics for people who are blind or have low vision (BLV). This new technology for the tactile display of braille and graphics, usually using raised pins, makes it easier to generate and access a large number of graphics. However, it differs from existing tactile graphics in terms of scale, height and fidelity. Here, we share the perspectives of four key stakeholders -- blind touch readers, vision specialist teachers, accessible format producers and assistive technology providers -- to explore the potential uses, advantages and needs relating to the introduction of RTDs. We also provide advice on what role the data visualisation community can take to help ensure that people who are BLV are best able to benefit from the introduction of affordable RTDs.
Optimal transport is a fundamental topic that has attracted a great amount of attention from the optimization community in the past decades. In this paper, we consider an interesting discrete dynamic optimal transport problem: can we efficiently update the optimal transport plan when the weights or the locations of the data points change? This problem is naturally motivated by several applications in machine learning. For example, we often need to compute the optimal transport cost between two different data sets; if some changes happen to a few data points, should we re-compute the high complexity cost function or update the cost by some efficient dynamic data structure? We are aware that several dynamic maximum flow algorithms have been proposed before, however, the research on dynamic minimum cost flow problem is still quite limited, to the best of our knowledge. We propose a novel 2D Skip Orthogonal List together with some dynamic tree techniques. Although our algorithm is based on the conventional simplex method, it can efficiently find the variable to pivot within expected $O(1)$ time, and complete each pivoting operation within expected $O(|V|)$ time where $V$ is the set of all supply and demand nodes. Since dynamic modifications typically do not introduce significant changes, our algorithm requires only a few simplex iterations in practice. So our algorithm is more efficient than re-computing the optimal transport cost that needs at least one traversal over all $|E| = O(|V|^2)$ variables, where $|E|$ denotes the number of edges in the network. Our experiments demonstrate that our algorithm significantly outperforms existing algorithms in the dynamic scenarios.
We explore a novel methodology for constructing confidence regions for parameters of linear models, using predictions from any arbitrary predictor. Our framework requires minimal assumptions on the noise and can be extended to functions deviating from strict linearity up to some adjustable threshold, thereby accommodating a comprehensive and pragmatically relevant set of functions. The derived confidence regions can be cast as constraints within a Mixed Integer Linear Programming framework, enabling optimisation of linear objectives. This representation enables robust optimization and the extraction of confidence intervals for specific parameter coordinates. Unlike previous methods, the confidence region can be empty, which can be used for hypothesis testing. Finally, we validate the empirical applicability of our method on synthetic data.
Polar codes are the first class of structured channel codes that achieve the symmetric capacity of binary channels with efficient encoding and decoding. In 2019, Arikan proposed a new polar coding scheme referred to as polarization-adjusted convolutional (PAC)} codes. In contrast to polar codes, PAC codes precode the information word using a convolutional code prior to polar encoding. This results in material coding gain over polar code under Fano sequential decoding as well as successive cancellation list (SCL) decoding. Given the advantages of SCL decoding over Fano decoding in certain scenarios such as low-SNR regime or where a constraint on the worst case decoding latency exists, in this paper, we focus on SCL decoding and present a simplified SCL (SSCL) decoding algorithm for PAC codes. SSCL decoding of PAC codes reduces the decoding latency by identifying special nodes in the decoding tree and processing them at the intermediate stages of the graph. Our simulation results show that the performance of PAC codes under SSCL decoding is almost similar to the SCL decoding while having lower decoding latency.
Markov processes are widely used mathematical models for describing dynamic systems in various fields. However, accurately simulating large-scale systems at long time scales is computationally expensive due to the short time steps required for accurate integration. In this paper, we introduce an inference process that maps complex systems into a simplified representational space and models large jumps in time. To achieve this, we propose Time-lagged Information Bottleneck (T-IB), a principled objective rooted in information theory, which aims to capture relevant temporal features while discarding high-frequency information to simplify the simulation task and minimize the inference error. Our experiments demonstrate that T-IB learns information-optimal representations for accurately modeling the statistical properties and dynamics of the original process at a selected time lag, outperforming existing time-lagged dimensionality reduction methods.
The Sparse Identification of Nonlinear Dynamics (SINDy) algorithm can be applied to stochastic differential equations to estimate the drift and the diffusion function using data from a realization of the SDE. The SINDy algorithm requires sample data from each of these functions, which is typically estimated numerically from the data of the state. We analyze the performance of the previously proposed estimates for the drift and diffusion function to give bounds on the error for finite data. However, since this algorithm only converges as both the sampling frequency and the length of trajectory go to infinity, obtaining approximations within a certain tolerance may be infeasible. To combat this, we develop estimates with higher orders of accuracy for use in the SINDy framework. For a given sampling frequency, these estimates give more accurate approximations of the drift and diffusion functions, making SINDy a far more feasible system identification method.
Calibrating simulation models that take large quantities of multi-dimensional data as input is a hard simulation optimization problem. Existing adaptive sampling strategies offer a methodological solution. However, they may not sufficiently reduce the computational cost for estimation and solution algorithm's progress within a limited budget due to extreme noise levels and heteroskedasticity of system responses. We propose integrating stratification with adaptive sampling for the purpose of efficiency in optimization. Stratification can exploit local dependence in the simulation inputs and outputs. Yet, the state-of-the-art does not provide a full capability to adaptively stratify the data as different solution alternatives are evaluated. We devise two procedures for data-driven calibration problems that involve a large dataset with multiple covariates to calibrate models within a fixed overall simulation budget. The first approach dynamically stratifies the input data using binary trees, while the second approach uses closed-form solutions based on linearity assumptions between the objective function and concomitant variables. We find that dynamical adjustment of stratification structure accelerates optimization and reduces run-to-run variability in generated solutions. Our case study for calibrating a wind power simulation model, widely used in the wind industry, using the proposed stratified adaptive sampling, shows better-calibrated parameters under a limited budget.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.