亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The circular external difference family and its strong version, which themselves are of independent combinatorial interest, were proposed as variants of the difference family to construct new unconditionally secure non-malleable threshold schemes. In this paper, we present new results regarding the construction and non-existence of (strong) circular external difference families, thereby solving several open problems on this topic.

相關內容

Humankind's understanding of the world is fundamentally linked to our perception and cognition, with \emph{human languages} serving as one of the major carriers of \emph{world knowledge}. In this vein, \emph{Large Language Models} (LLMs) like ChatGPT epitomize the pre-training of extensive, sequence-based world knowledge into neural networks, facilitating the processing and manipulation of this knowledge in a parametric space. This article explores large models through the lens of ``knowledge''. We initially investigate the role of symbolic knowledge such as Knowledge Graphs (KGs) in enhancing LLMs, covering aspects like knowledge-augmented language model, structure-inducing pre-training, knowledgeable prompts, structured CoT, knowledge editing, semantic tools for LLM and knowledgeable AI agents. Subsequently, we examine how LLMs can amplify traditional symbolic knowledge bases, encompassing aspects like using LLM as KG builder and controller, structured knowledge pretraining, LLM-enhanced symbolic reasoning, and the amalgamation of perception with cognition. Considering the intricate nature of human knowledge, we advocate for the creation of \emph{Large Knowledge Models} (LKM), specifically engineered to manage diversified spectrum of knowledge structures. This ambitious undertaking could entail several key challenges, such as disentangling knowledge representation from language models, restructuring pre-training with structured knowledge, and building large commonsense models, among others. We finally propose a five-``A'' principle to distinguish the concept of LKM.

While Large Language Models (LLMs) display versatile functionality, they continue to generate harmful, biased, and toxic content, as demonstrated by the prevalence of human-designed jailbreaks. In this work, we present Tree of Attacks with Pruning (TAP), an automated method for generating jailbreaks that only requires black-box access to the target LLM. TAP utilizes an LLM to iteratively refine candidate (attack) prompts using tree-of-thoughts reasoning until one of the generated prompts jailbreaks the target. Crucially, before sending prompts to the target, TAP assesses them and prunes the ones unlikely to result in jailbreaks. Using tree-of-thought reasoning allows TAP to navigate a large search space of prompts and pruning reduces the total number of queries sent to the target. In empirical evaluations, we observe that TAP generates prompts that jailbreak state-of-the-art LLMs (including GPT4 and GPT4-Turbo) for more than 80% of the prompts using only a small number of queries. This significantly improves upon the previous state-of-the-art black-box method for generating jailbreaks.

Information Extraction (IE) seeks to derive structured information from unstructured texts, often facing challenges in low-resource scenarios due to data scarcity and unseen classes. This paper presents a review of neural approaches to low-resource IE from \emph{traditional} and \emph{LLM-based} perspectives, systematically categorizing them into a fine-grained taxonomy. Then we conduct empirical study on LLM-based methods compared with previous state-of-the-art models, and discover that (1) well-tuned LMs are still predominant; (2) tuning open-resource LLMs and ICL with GPT family is promising in general; (3) the optimal LLM-based technical solution for low-resource IE can be task-dependent. In addition, we discuss low-resource IE with LLMs, highlight promising applications, and outline potential research directions. This survey aims to foster understanding of this field, inspire new ideas, and encourage widespread applications in both academia and industry.

Generalized from the concept of consensus, this paper considers a group of edge agreements, i.e. constraints defined for neighboring agents, in which each pair of neighboring agents is required to satisfy one edge agreement constraint. Edge agreements are defined locally to allow more flexibility than a global consensus. This work formulates a multi-agent optimization problem under edge agreements and proposes a continuous-time distributed algorithm to solve it. Both analytical proof and numerical examples are provided to validate the effectiveness of the proposed algorithm.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Computing is a critical driving force in the development of human civilization. In recent years, we have witnessed the emergence of intelligent computing, a new computing paradigm that is reshaping traditional computing and promoting digital revolution in the era of big data, artificial intelligence and internet-of-things with new computing theories, architectures, methods, systems, and applications. Intelligent computing has greatly broadened the scope of computing, extending it from traditional computing on data to increasingly diverse computing paradigms such as perceptual intelligence, cognitive intelligence, autonomous intelligence, and human-computer fusion intelligence. Intelligence and computing have undergone paths of different evolution and development for a long time but have become increasingly intertwined in recent years: intelligent computing is not only intelligence-oriented but also intelligence-driven. Such cross-fertilization has prompted the emergence and rapid advancement of intelligent computing. Intelligent computing is still in its infancy and an abundance of innovations in the theories, systems, and applications of intelligent computing are expected to occur soon. We present the first comprehensive survey of literature on intelligent computing, covering its theory fundamentals, the technological fusion of intelligence and computing, important applications, challenges, and future perspectives. We believe that this survey is highly timely and will provide a comprehensive reference and cast valuable insights into intelligent computing for academic and industrial researchers and practitioners.

With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{//shaunyuan22.github.io/SODA}.

Graph neural networks (GNNs) have emerged as a series of competent graph learning methods for diverse real-world scenarios, ranging from daily applications like recommendation systems and question answering to cutting-edge technologies such as drug discovery in life sciences and n-body simulation in astrophysics. However, task performance is not the only requirement for GNNs. Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks, unexplainable discrimination against disadvantaged groups, or excessive resource consumption in edge computing environments. To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness. To this end, we propose a comprehensive roadmap to build trustworthy GNNs from the view of the various computing technologies involved. In this survey, we introduce basic concepts and comprehensively summarise existing efforts for trustworthy GNNs from six aspects, including robustness, explainability, privacy, fairness, accountability, and environmental well-being. Additionally, we highlight the intricate cross-aspect relations between the above six aspects of trustworthy GNNs. Finally, we present a thorough overview of trending directions for facilitating the research and industrialisation of trustworthy GNNs.

Images can convey rich semantics and induce various emotions in viewers. Recently, with the rapid advancement of emotional intelligence and the explosive growth of visual data, extensive research efforts have been dedicated to affective image content analysis (AICA). In this survey, we will comprehensively review the development of AICA in the recent two decades, especially focusing on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence. We begin with an introduction to the key emotion representation models that have been widely employed in AICA and description of available datasets for performing evaluation with quantitative comparison of label noise and dataset bias. We then summarize and compare the representative approaches on (1) emotion feature extraction, including both handcrafted and deep features, (2) learning methods on dominant emotion recognition, personalized emotion prediction, emotion distribution learning, and learning from noisy data or few labels, and (3) AICA based applications. Finally, we discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.

We present MMKG, a collection of three knowledge graphs that contain both numerical features and (links to) images for all entities as well as entity alignments between pairs of KGs. Therefore, multi-relational link prediction and entity matching communities can benefit from this resource. We believe this data set has the potential to facilitate the development of novel multi-modal learning approaches for knowledge graphs.We validate the utility ofMMKG in the sameAs link prediction task with an extensive set of experiments. These experiments show that the task at hand benefits from learning of multiple feature types.

北京阿比特科技有限公司