We present a lightweight system for stereo matching through embedded GPUs. It breaks the trade-off between accuracy and processing speed in stereo matching, enabling our embedded system to further improve the matching accuracy while ensuring real-time processing. The main idea of our method is to construct a tiny neural network based on variational auto-encoder (VAE) to upsample and refinement a small size of coarse disparity map, which is first generated by a traditional matching method. The proposed hybrid structure cannot only bring the advantage of traditional methods in terms of computational complexity, but also ensure the matching accuracy under the impact of neural network. Extensive experiments on the KITTI 2015 benchmark demonstrate that our tiny system exhibits high robustness in improving the accuracy of the coarse disparity maps generated by different algorithms, while also running in real-time on embedded GPUs.
This paper presents an innovative approach to student identification during exams and knowledge tests, which overcomes the limitations of the traditional personal information entry method. The proposed method employs a matrix template on the designated section of the exam, where squares containing numbers are selectively blackened. The methodology involves the development of a neural network specifically designed for recognizing students' personal identification numbers. The neural network utilizes a specially adapted U-Net architecture, trained on an extensive dataset comprising images of blackened tables. The network demonstrates proficiency in recognizing the patterns and arrangement of blackened squares, accurately interpreting the information inscribed within them. Additionally, the model exhibits high accuracy in correctly identifying entered student personal numbers and effectively detecting erroneous entries within the table. This approach offers multiple advantages. Firstly, it significantly accelerates the exam marking process by automatically extracting identifying information from the blackened tables, eliminating the need for manual entry and minimizing the potential for errors. Secondly, the method automates the identification process, thereby reducing administrative effort and expediting data processing. The introduction of this innovative identification system represents a notable advancement in the field of exams and knowledge tests, replacing the conventional manual entry of personal data with a streamlined, efficient, and accurate identification process.
We introduce YOGA, a deep learning based yet lightweight object detection model that can operate on low-end edge devices while still achieving competitive accuracy. The YOGA architecture consists of a two-phase feature learning pipeline with a cheap linear transformation, which learns feature maps using only half of the convolution filters required by conventional convolutional neural networks. In addition, it performs multi-scale feature fusion in its neck using an attention mechanism instead of the naive concatenation used by conventional detectors. YOGA is a flexible model that can be easily scaled up or down by several orders of magnitude to fit a broad range of hardware constraints. We evaluate YOGA on COCO-val and COCO-testdev datasets with other over 10 state-of-the-art object detectors. The results show that YOGA strikes the best trade-off between model size and accuracy (up to 22% increase of AP and 23-34% reduction of parameters and FLOPs), making it an ideal choice for deployment in the wild on low-end edge devices. This is further affirmed by our hardware implementation and evaluation on NVIDIA Jetson Nano.
This study explores the intricacies of waiting games, a novel dynamic that emerged with Ethereum's transition to a Proof-of-Stake (PoS)-based block proposer selection protocol. Within this PoS framework, validators acquire a distinct monopoly position during their assigned slots, given that block proposal rights are set deterministically, contrasting with Proof-of-Work (PoW) protocols. Consequently, validators have the power to delay block proposals, stepping outside the honest validator specs, optimizing potential returns through MEV payments. Nonetheless, this strategic behaviour introduces the risk of orphaning if attestors fail to observe and vote on the block timely. Our quantitative analysis of this waiting phenomenon and its associated risks reveals an opportunity for enhanced MEV extraction, exceeding standard protocol rewards, and providing sufficient incentives for validators to play the game. Notably, our findings indicate that delayed proposals do not always result in orphaning and orphaned blocks are not consistently proposed later than non-orphaned ones. To further examine consensus stability under varying network conditions, we adopt an agent-based simulation model tailored for PoS-Ethereum, illustrating that consensus disruption will not be observed unless significant delay strategies are adopted. Ultimately, this research offers valuable insights into the advent of waiting games on Ethereum, providing a comprehensive understanding of trade-offs and potential profits for validators within the blockchain ecosystem.
The detection of malicious Deepfakes is a constantly evolving problem, that requires continuous monitoring of detectors, to ensure they are able to detect image manipulations generated by the latest emerging models. In this paper, we present a preliminary study that investigates the vulnerability of single-image Deepfake detectors to attacks created by a representative of the newest generation of generative methods, i.e. Denoising Diffusion Models (DDMs). Our experiments are run on FaceForensics++, a commonly used benchmark dataset, consisting of Deepfakes generated with various techniques for face swapping and face reenactment. The analysis shows, that reconstructing existing Deepfakes with only one denoising diffusion step significantly decreases the accuracy of all tested detectors, without introducing visually perceptible image changes.
The state of the art related to parameter correlation in two-parameter models has been reviewed in this paper. The apparent contradictions between the different authors regarding the ability of D--optimality to simultaneously reduce the correlation and the area of the confidence ellipse in two-parameter models were analyzed. Two main approaches were found: 1) those who consider that the optimality criteria simultaneously control the precision and correlation of the parameter estimators; and 2) those that consider a combination of criteria to achieve the same objective. An analytical criterion combining in its structure both the optimality of the precision of the estimators of the parameters and the reduction of the correlation between their estimators is provided. The criterion was tested both in a simple linear regression model, considering all possible design spaces, and in a non-linear model with strong correlation of the estimators of the parameters (Michaelis--Menten) to show its performance. This criterion showed a superior behavior to all the strategies and criteria to control at the same time the precision and the correlation.
We employ a toolset -- dubbed Dr. Frankenstein -- to analyse the similarity of representations in deep neural networks. With this toolset, we aim to match the activations on given layers of two trained neural networks by joining them with a stitching layer. We demonstrate that the inner representations emerging in deep convolutional neural networks with the same architecture but different initializations can be matched with a surprisingly high degree of accuracy even with a single, affine stitching layer. We choose the stitching layer from several possible classes of linear transformations and investigate their performance and properties. The task of matching representations is closely related to notions of similarity. Using this toolset, we also provide a novel viewpoint on the current line of research regarding similarity indices of neural network representations: the perspective of the performance on a task.
Seeking the equivalent entities among multi-source Knowledge Graphs (KGs) is the pivotal step to KGs integration, also known as \emph{entity alignment} (EA). However, most existing EA methods are inefficient and poor in scalability. A recent summary points out that some of them even require several days to deal with a dataset containing 200,000 nodes (DWY100K). We believe over-complex graph encoder and inefficient negative sampling strategy are the two main reasons. In this paper, we propose a novel KG encoder -- Dual Attention Matching Network (Dual-AMN), which not only models both intra-graph and cross-graph information smartly, but also greatly reduces computational complexity. Furthermore, we propose the Normalized Hard Sample Mining Loss to smoothly select hard negative samples with reduced loss shift. The experimental results on widely used public datasets indicate that our method achieves both high accuracy and high efficiency. On DWY100K, the whole running process of our method could be finished in 1,100 seconds, at least 10* faster than previous work. The performances of our method also outperform previous works across all datasets, where Hits@1 and MRR have been improved from 6% to 13%.
Multi-label text classification refers to the problem of assigning each given document its most relevant labels from the label set. Commonly, the metadata of the given documents and the hierarchy of the labels are available in real-world applications. However, most existing studies focus on only modeling the text information, with a few attempts to utilize either metadata or hierarchy signals, but not both of them. In this paper, we bridge the gap by formalizing the problem of metadata-aware text classification in a large label hierarchy (e.g., with tens of thousands of labels). To address this problem, we present the MATCH solution -- an end-to-end framework that leverages both metadata and hierarchy information. To incorporate metadata, we pre-train the embeddings of text and metadata in the same space and also leverage the fully-connected attentions to capture the interrelations between them. To leverage the label hierarchy, we propose different ways to regularize the parameters and output probability of each child label by its parents. Extensive experiments on two massive text datasets with large-scale label hierarchies demonstrate the effectiveness of MATCH over state-of-the-art deep learning baselines.
To retrieve more relevant, appropriate and useful documents given a query, finding clues about that query through the text is crucial. Recent deep learning models regard the task as a term-level matching problem, which seeks exact or similar query patterns in the document. However, we argue that they are inherently based on local interactions and do not generalise to ubiquitous, non-consecutive contextual relationships.In this work, we propose a novel relevance matching model based on graph neural networks to leverage the document-level word relationships for ad-hoc retrieval. In addition to the local interactions, we explicitly incorporate all contexts of a term through the graph-of-word text format. Matching patterns can be revealed accordingly to provide a more accurate relevance score. Our approach significantly outperforms strong baselines on two ad-hoc benchmarks. We also experimentally compare our model with BERT and show our ad-vantages on long documents.
We study the problem of learning representations of entities and relations in knowledge graphs for predicting missing links. The success of such a task heavily relies on the ability of modeling and inferring the patterns of (or between) the relations. In this paper, we present a new approach for knowledge graph embedding called RotatE, which is able to model and infer various relation patterns including: symmetry/antisymmetry, inversion, and composition. Specifically, the RotatE model defines each relation as a rotation from the source entity to the target entity in the complex vector space. In addition, we propose a novel self-adversarial negative sampling technique for efficiently and effectively training the RotatE model. Experimental results on multiple benchmark knowledge graphs show that the proposed RotatE model is not only scalable, but also able to infer and model various relation patterns and significantly outperform existing state-of-the-art models for link prediction.