亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep learning has emerged as a strong alternative for classical iterative methods for deformable medical image registration, where the goal is to find a mapping between the coordinate systems of two images. Popular classical image registration methods enforce the useful inductive biases of symmetricity, inverse consistency, and topology preservation by construct. However, while many deep learning registration methods encourage these properties via loss functions, no earlier methods enforce all of them by construct. Here, we propose a novel registration architecture based on extracting multi-resolution feature representations which is by construct symmetric, inverse consistent, and topology preserving. We also develop an implicit layer for memory efficient inversion of the deformation fields. Our method achieves state-of-the-art registration accuracy on two datasets.

相關內容

圖(tu)(tu)(tu)像(xiang)(xiang)(xiang)(xiang)配(pei)準是圖(tu)(tu)(tu)像(xiang)(xiang)(xiang)(xiang)處理(li)研(yan)究(jiu)領域中(zhong)(zhong)的(de)(de)(de)(de)(de)一(yi)個典型(xing)問(wen)題(ti)和技(ji)術難點,其目的(de)(de)(de)(de)(de)在(zai)于比(bi)較(jiao)或融合針對(dui)同一(yi)對(dui)象在(zai)不(bu)同條件下獲(huo)取的(de)(de)(de)(de)(de)圖(tu)(tu)(tu)像(xiang)(xiang)(xiang)(xiang),例如圖(tu)(tu)(tu)像(xiang)(xiang)(xiang)(xiang)會(hui)來自不(bu)同的(de)(de)(de)(de)(de)采集設備,取自不(bu)同的(de)(de)(de)(de)(de)時(shi)間,不(bu)同的(de)(de)(de)(de)(de)拍攝(she)視(shi)角等(deng)等(deng),有(you)時(shi)也(ye)需要(yao)用到(dao)針對(dui)不(bu)同對(dui)象的(de)(de)(de)(de)(de)圖(tu)(tu)(tu)像(xiang)(xiang)(xiang)(xiang)配(pei)準問(wen)題(ti)。具(ju)體地(di)說(shuo),對(dui)于一(yi)組圖(tu)(tu)(tu)像(xiang)(xiang)(xiang)(xiang)數據(ju)集中(zhong)(zhong)的(de)(de)(de)(de)(de)兩(liang)(liang)幅(fu)圖(tu)(tu)(tu)像(xiang)(xiang)(xiang)(xiang),通過(guo)(guo)尋找一(yi)種空間變換把一(yi)幅(fu)圖(tu)(tu)(tu)像(xiang)(xiang)(xiang)(xiang)映射(she)到(dao)另(ling)一(yi)幅(fu)圖(tu)(tu)(tu)像(xiang)(xiang)(xiang)(xiang),使得兩(liang)(liang)圖(tu)(tu)(tu)中(zhong)(zhong)對(dui)應于空間同一(yi)位置的(de)(de)(de)(de)(de)點一(yi)一(yi)對(dui)應起來,從而達(da)到(dao)信(xin)息融合的(de)(de)(de)(de)(de)目的(de)(de)(de)(de)(de)。 該(gai)技(ji)術在(zai)計算機視(shi)覺、醫學圖(tu)(tu)(tu)像(xiang)(xiang)(xiang)(xiang)處理(li)以及(ji)材(cai)料力(li)學等(deng)領域都(dou)具(ju)有(you)廣(guang)泛的(de)(de)(de)(de)(de)應用。根據(ju)具(ju)體應用的(de)(de)(de)(de)(de)不(bu)同,有(you)的(de)(de)(de)(de)(de)側(ce)重(zhong)于通過(guo)(guo)變換結果(guo)融合兩(liang)(liang)幅(fu)圖(tu)(tu)(tu)像(xiang)(xiang)(xiang)(xiang),有(you)的(de)(de)(de)(de)(de)側(ce)重(zhong)于研(yan)究(jiu)變換本身以獲(huo)得對(dui)象的(de)(de)(de)(de)(de)一(yi)些(xie)力(li)學屬性(xing)。

Matrix decompositions are ubiquitous in machine learning, including applications in dimensionality reduction, data compression and deep learning algorithms. Typical solutions for matrix decompositions have polynomial complexity which significantly increases their computational cost and time. In this work, we leverage efficient processing operations that can be run in parallel on modern Graphical Processing Units (GPUs), predominant computing architecture used e.g. in deep learning, to reduce the computational burden of computing matrix decompositions. More specifically, we reformulate the randomized decomposition problem to incorporate fast matrix multiplication operations (BLAS-3) as building blocks. We show that this formulation, combined with fast random number generators, allows to fully exploit the potential of parallel processing implemented in GPUs. Our extensive evaluation confirms the superiority of this approach over the competing methods and we release the results of this research as a part of the official CUDA implementation (//docs.nvidia.com/cuda/cusolver/index.html).

Many anatomical structures can be described by surface or volume meshes. Machine learning is a promising tool to extract information from these 3D models. However, high-fidelity meshes often contain hundreds of thousands of vertices, which creates unique challenges in building deep neural network architectures. Furthermore, patient-specific meshes may not be canonically aligned which limits the generalisation of machine learning algorithms. We propose LaB-GATr, a transfomer neural network with geometric tokenisation that can effectively learn with large-scale (bio-)medical surface and volume meshes through sequence compression and interpolation. Our method extends the recently proposed geometric algebra transformer (GATr) and thus respects all Euclidean symmetries, i.e. rotation, translation and reflection, effectively mitigating the problem of canonical alignment between patients. LaB-GATr achieves state-of-the-art results on three tasks in cardiovascular hemodynamics modelling and neurodevelopmental phenotype prediction, featuring meshes of up to 200,000 vertices. Our results demonstrate that LaB-GATr is a powerful architecture for learning with high-fidelity meshes which has the potential to enable interesting downstream applications. Our implementation is publicly available.

There has been a growing interest in recent years in modelling multiple modalities (or views) of data to for example, understand the relationship between modalities or to generate missing data. Multi-view autoencoders have gained significant traction for their adaptability and versatility in modelling multi-modal data, demonstrating an ability to tailor their approach to suit the characteristics of the data at hand. However, most multi-view autoencoders have inconsistent notation and are often implemented using different coding frameworks. To address this, we present a unified mathematical framework for multi-view autoencoders, consolidating their formulations. Moreover, we offer insights into the motivation and theoretical advantages of each model. To facilitate accessibility and practical use, we extend the documentation and functionality of the previously introduced \texttt{multi-view-AE} library. This library offers Python implementations of numerous multi-view autoencoder models, presented within a user-friendly framework. Through benchmarking experiments, we evaluate our implementations against previous ones, demonstrating comparable or superior performance. This work aims to establish a cohesive foundation for multi-modal modelling, serving as a valuable educational resource in the field.

Recently, a myriad of conditional image generation and editing models have been developed to serve different downstream tasks, including text-to-image generation, text-guided image editing, subject-driven image generation, control-guided image generation, etc. However, we observe huge inconsistencies in experimental conditions: datasets, inference, and evaluation metrics - render fair comparisons difficult. This paper proposes ImagenHub, which is a one-stop library to standardize the inference and evaluation of all the conditional image generation models. Firstly, we define seven prominent tasks and curate high-quality evaluation datasets for them. Secondly, we built a unified inference pipeline to ensure fair comparison. Thirdly, we design two human evaluation scores, i.e. Semantic Consistency and Perceptual Quality, along with comprehensive guidelines to evaluate generated images. We train expert raters to evaluate the model outputs based on the proposed metrics. Our human evaluation achieves a high inter-worker agreement of Krippendorff's alpha on 76% models with a value higher than 0.4. We comprehensively evaluated a total of around 30 models and observed three key takeaways: (1) the existing models' performance is generally unsatisfying except for Text-guided Image Generation and Subject-driven Image Generation, with 74% models achieving an overall score lower than 0.5. (2) we examined the claims from published papers and found 83% of them hold with a few exceptions. (3) None of the existing automatic metrics has a Spearman's correlation higher than 0.2 except subject-driven image generation. Moving forward, we will continue our efforts to evaluate newly published models and update our leaderboard to keep track of the progress in conditional image generation.

Sparse regression and classification estimators that respect group structures have application to an assortment of statistical and machine learning problems, from multitask learning to sparse additive modeling to hierarchical selection. This work introduces structured sparse estimators that combine group subset selection with shrinkage. To accommodate sophisticated structures, our estimators allow for arbitrary overlap between groups. We develop an optimization framework for fitting the nonconvex regularization surface and present finite-sample error bounds for estimation of the regression function. As an application requiring structure, we study sparse semiparametric additive modeling, a procedure that allows the effect of each predictor to be zero, linear, or nonlinear. For this task, the new estimators improve across several metrics on synthetic data compared to alternatives. Finally, we demonstrate their efficacy in modeling supermarket foot traffic and economic recessions using many predictors. These demonstrations suggest sparse semiparametric additive models, fit using the new estimators, are an excellent compromise between fully linear and fully nonparametric alternatives. All of our algorithms are made available in the scalable implementation grpsel.

The purpose of this study is to introduce a new approach to feature ranking for classification tasks, called in what follows greedy feature selection. In statistical learning, feature selection is usually realized by means of methods that are independent of the classifier applied to perform the prediction using that reduced number of features. Instead, greedy feature selection identifies the most important feature at each step and according to the selected classifier. In the paper, the benefits of such scheme are investigated theoretically in terms of model capacity indicators, such as the Vapnik-Chervonenkis (VC) dimension or the kernel alignment, and tested numerically by considering its application to the problem of predicting geo-effective manifestations of the active Sun.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

Radiologist is "doctor's doctor", biomedical image segmentation plays a central role in quantitative analysis, clinical diagnosis, and medical intervention. In the light of the fully convolutional networks (FCN) and U-Net, deep convolutional networks (DNNs) have made significant contributions in biomedical image segmentation applications. In this paper, based on U-Net, we propose MDUnet, a multi-scale densely connected U-net for biomedical image segmentation. we propose three different multi-scale dense connections for U shaped architectures encoder, decoder and across them. The highlights of our architecture is directly fuses the neighboring different scale feature maps from both higher layers and lower layers to strengthen feature propagation in current layer. Which can largely improves the information flow encoder, decoder and across them. Multi-scale dense connections, which means containing shorter connections between layers close to the input and output, also makes much deeper U-net possible. We adopt the optimal model based on the experiment and propose a novel Multi-scale Dense U-Net (MDU-Net) architecture with quantization. Which reduce overfitting in MDU-Net for better accuracy. We evaluate our purpose model on the MICCAI 2015 Gland Segmentation dataset (GlaS). The three multi-scale dense connections improve U-net performance by up to 1.8% on test A and 3.5% on test B in the MICCAI Gland dataset. Meanwhile the MDU-net with quantization achieves the superiority over U-Net performance by up to 3% on test A and 4.1% on test B.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司