亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated Learning (FL) is an intriguing distributed machine learning approach due to its privacy-preserving characteristics. To balance the trade-off between energy and execution latency, and thus accommodate different demands and application scenarios, we formulate an optimization problem to minimize a weighted sum of total energy consumption and completion time through two weight parameters. The optimization variables include bandwidth, transmission power and CPU frequency of each device in the FL system, where all devices are linked to a base station and train a global model collaboratively. Through decomposing the non-convex optimization problem into two subproblems, we devise a resource allocation algorithm to determine the bandwidth allocation, transmission power, and CPU frequency for each participating device. We further present the convergence analysis and computational complexity of the proposed algorithm. Numerical results show that our proposed algorithm not only has better performance at different weight parameters (i.e., different demands) but also outperforms the state of the art.

相關內容

Remote monitoring systems analyze the environment dynamics in different smart industrial applications, such as occupational health and safety, and environmental monitoring. Specifically, in industrial Internet of Things (IoT) systems, the huge number of devices and the expected performance put pressure on resources, such as computational, network, and device energy. Distributed training of Machine and Deep Learning (ML/DL) models for intelligent industrial IoT applications is very challenging for resource limited devices over heterogeneous wireless networks (HetNets). Hierarchical Federated Learning (HFL) performs training at multiple layers offloading the tasks to nearby Multi-Access Edge Computing (MEC) units. In this paper, we propose a novel energy-efficient HFL framework enabled by Wireless Energy Transfer (WET) and designed for heterogeneous networks with massive Multiple-Input Multiple-Output (MIMO) wireless backhaul. Our energy-efficiency approach is formulated as a Mixed-Integer Non-Linear Programming (MINLP) problem, where we optimize the HFL device association and manage the wireless transmitted energy. However due to its high complexity, we design a Heuristic Resource Management Algorithm, namely H2RMA, that respects energy, channel quality, and accuracy constraints, while presenting a low computational complexity. We also improve the energy consumption of the network using an efficient device scheduling scheme. Finally, we investigate device mobility and its impact on the HFL performance. Our extensive experiments confirm the high performance of the proposed resource management approach in HFL over HetNets, in terms of training loss and grid energy costs.

Graphics Processing Units (GPUs) have become an integral part of High-Performance Computing to achieve an Exascale performance. The main goal of application developers of GPU is to tune their code extensively to obtain optimal performance, making efficient use of different resources available. While extracting optimal performance of applications on an HPC infrastructure, developers should also ensure the applications have the least energy usage considering the massive power consumption of data centres and HPC servers. This thesis presents two models developed which can be utilized by developers in analysing the CUDA kernel's energy dissipation. The first one is a model that predicts the CUDA kernel's execution time. Here a PTX code is statically analysed to extract instruction features, control flow, and data dependence. We propose two scheduling algorithm approaches that satisfy the performance and hardware constraints. The second model is a static analysis-based power prediction built by utilizing machine learning techniques. Features used for building the model are derived using static analysis of PTX code. These features are chosen to understand the relationship between GPU power consumption and program features that can aid developers in building energy-efficient, sustainable applications. The dataset used for validating both models include kernels from different benchmarks suits, sizes, nature (e.g., compute-bound, memory-bound), and complexity (e.g., control divergence, memory access patterns). We also present a tool that has practically validated the effectiveness and ease of using the two models as design assistance tools for GPU.

State-of-the-art machine-learning-based models are a popular choice for modeling and forecasting energy behavior in buildings because given enough data, they are good at finding spatiotemporal patterns and structures even in scenarios where the complexity prohibits analytical descriptions. However, their architecture typically does not hold physical correspondence to mechanistic structures linked with governing physical phenomena. As a result, their ability to successfully generalize for unobserved timesteps depends on the representativeness of the dynamics underlying the observed system in the data, which is difficult to guarantee in real-world engineering problems such as control and energy management in digital twins. In response, we present a framework that combines lumped-parameter models in the form of linear time-invariant (LTI) state-space models (SSMs) with unsupervised reduced-order modeling in a subspace-based domain adaptation (SDA) framework. SDA is a type of transfer-learning (TL) technique, typically adopted for exploiting labeled data from one domain to predict in a different but related target domain for which labeled data is limited. We introduce a novel SDA approach where instead of labeled data, we leverage the geometric structure of the LTI SSM governed by well-known heat transfer ordinary differential equations to forecast for unobserved timesteps beyond observed measurement data. Fundamentally, our approach geometrically aligns the physics-derived and data-derived embedded subspaces closer together. In this initial exploration, we evaluate the physics-based SDA framework on a demonstrative heat conduction scenario by varying the thermophysical properties of the source and target systems to demonstrate the transferability of mechanistic models from a physics-based domain to a data domain.

The present study explores the use of clustering techniques for the design and implementation of a demand response (DR) program for commercial and residential prosumers. The goal of the program is to alter the consumption behavior of the prosumers pertaining to a distributed energy community in Italy. This aggregation aims to: a) minimize the reverse power flow at the primary substation, that occurs when generation from solar panels in the local grid exceeds consumption, and b) shave the system wide peak demand, that typically occurs during the hours of late afternoon. Regarding the clustering stage, three popular machine learning algorithms for electrical load clustering are employed -namely k-means, k-medoids and an agglomerative hierarchical clustering- alongside two different distance measures -namely euclidean and constrained dynamic time warping (DTW). We evaluate the methods using multiple validation metrics including a novel metric -namely peak performance score (PPS)- that we propose in the context of this study. The best model is employed to divide daily prosumer load profiles into clusters and each cluster is analyzed in terms of load shape, mean entropy, and load type distribution. These characteristics are then used to distinguish the clusters that have the potential to serve the optimization objectives by matching them to appropriate DR schemes including time of use (TOU), critical peak pricing (CPP), and real-time pricing (RTP). The results of this study can be useful for network operators, utilities, and aggregators that aim to develop targeted DR programs for groups of prosumers within flexible energy communities.

We consider a node where packets of fixed size (in bits) are generated at arbitrary intervals. The node is required to maintain the peak age of information (AoI) at the monitor below a threshold by transmitting potentially a subset of the generated packets. At any time, depending on the packet availability and the current AoI, the node can choose which packet to transmit, and at what transmission speed (in bits per second). Power consumption is a monotonically increasing convex function of the transmission speed. In this paper, for any given time horizon, the objective is to find a causal policy that minimizes the total energy consumption while satisfying the peak AoI constraint. We consider competitive ratio as the performance metric, that is defined as the ratio of the expected cost of a causal policy, and the expected cost of an optimal offline policy that knows the input (packet generation times) in advance. We first derive a lower bound on the competitive ratio of all causal policies, in terms of the system parameters (such as power function, packet size and peak AoI threshold), and then propose a particular policy for which we show that its competitive ratio has similar order of dependence on the system parameters as the derived lower bound.

Federated learning has shown enormous promise as a way of training ML models in distributed environments while reducing communication costs and protecting data privacy. However, the rise of complex cyber-physical systems, such as the Internet-of-Things, presents new challenges that are not met with traditional FL methods. Hierarchical Federated Learning extends the traditional FL process to enable more efficient model aggregation based on application needs or characteristics of the deployment environment (e.g., resource capabilities and/or network connectivity). It illustrates the benefits of balancing processing across the cloud-edge continuum. Hierarchical Federated Learning is likely to be a key enabler for a wide range of applications, such as smart farming and smart energy management, as it can improve performance and reduce costs, whilst also enabling FL workflows to be deployed in environments that are not well-suited to traditional FL. Model aggregation algorithms, software frameworks, and infrastructures will need to be designed and implemented to make such solutions accessible to researchers and engineers across a growing set of domains. H-FL also introduces a number of new challenges. For instance, there are implicit infrastructural challenges. There is also a trade-off between having generalised models and personalised models. If there exist geographical patterns for data (e.g., soil conditions in a smart farm likely are related to the geography of the region itself), then it is crucial that models used locally can consider their own locality in addition to a globally-learned model. H-FL will be crucial to future FL solutions as it can aggregate and distribute models at multiple levels to optimally serve the trade-off between locality dependence and global anomaly robustness.

Machine and deep learning methods for medical and healthcare applications have shown significant progress and performance improvement in recent years. These methods require vast amounts of training data which are available in the medical sector, albeit decentralized. Medical institutions generate vast amounts of data for which sharing and centralizing remains a challenge as the result of data and privacy regulations. The federated learning technique is well-suited to tackle these challenges. However, federated learning comes with a new set of open problems related to communication overhead, efficient parameter aggregation, client selection strategies and more. In this work, we address the step prior to the initiation of a federated network for model training, client recruitment. By intelligently recruiting clients, communication overhead and overall cost of training can be reduced without sacrificing predictive performance. Client recruitment aims at pre-excluding potential clients from partaking in the federation based on a set of criteria indicative of their eventual contributions to the federation. In this work, we propose a client recruitment approach using only the output distribution and sample size at the client site. We show how a subset of clients can be recruited without sacrificing model performance whilst, at the same time, significantly improving computation time. By applying the recruitment approach to the training of federated models for accurate patient Length of Stay prediction using data from 189 Intensive Care Units, we show how the models trained in federations made up from recruited clients significantly outperform federated models trained with the standard procedure in terms of predictive power and training time.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

北京阿比特科技有限公司