亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

State-of-the-art machine-learning-based models are a popular choice for modeling and forecasting energy behavior in buildings because given enough data, they are good at finding spatiotemporal patterns and structures even in scenarios where the complexity prohibits analytical descriptions. However, their architecture typically does not hold physical correspondence to mechanistic structures linked with governing physical phenomena. As a result, their ability to successfully generalize for unobserved timesteps depends on the representativeness of the dynamics underlying the observed system in the data, which is difficult to guarantee in real-world engineering problems such as control and energy management in digital twins. In response, we present a framework that combines lumped-parameter models in the form of linear time-invariant (LTI) state-space models (SSMs) with unsupervised reduced-order modeling in a subspace-based domain adaptation (SDA) framework. SDA is a type of transfer-learning (TL) technique, typically adopted for exploiting labeled data from one domain to predict in a different but related target domain for which labeled data is limited. We introduce a novel SDA approach where instead of labeled data, we leverage the geometric structure of the LTI SSM governed by well-known heat transfer ordinary differential equations to forecast for unobserved timesteps beyond observed measurement data. Fundamentally, our approach geometrically aligns the physics-derived and data-derived embedded subspaces closer together. In this initial exploration, we evaluate the physics-based SDA framework on a demonstrative heat conduction scenario by varying the thermophysical properties of the source and target systems to demonstrate the transferability of mechanistic models from a physics-based domain to a data domain.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 成比例 · Processing(編程語言) · 生成模型 · Markov ·
2023 年 6 月 15 日

Diffusion models, which convert noise into new data instances by learning to reverse a Markov diffusion process, have become a cornerstone in contemporary generative modeling. While their practical power has now been widely recognized, the theoretical underpinnings remain far from mature. In this work, we develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models in discrete time, assuming access to reliable estimates of the (Stein) score functions. For a popular deterministic sampler (based on the probability flow ODE), we establish a convergence rate proportional to $1/T$ (with $T$ the total number of steps), improving upon past results; for another mainstream stochastic sampler (i.e., a type of the denoising diffusion probabilistic model (DDPM)), we derive a convergence rate proportional to $1/\sqrt{T}$, matching the state-of-the-art theory. Our theory imposes only minimal assumptions on the target data distribution (e.g., no smoothness assumption is imposed), and is developed based on an elementary yet versatile non-asymptotic approach without resorting to toolboxes for SDEs and ODEs. Further, we design two accelerated variants, improving the convergence to $1/T^2$ for the ODE-based sampler and $1/T$ for the DDPM-type sampler, which might be of independent theoretical and empirical interest.

Energy time-series analysis describes the process of analyzing past energy observations and possibly external factors so as to predict the future. Different tasks are involved in the general field of energy time-series analysis and forecasting, with electric load demand forecasting, personalized energy consumption forecasting, as well as renewable energy generation forecasting being among the most common ones. Following the exceptional performance of Deep Learning (DL) in a broad area of vision tasks, DL models have successfully been utilized in time-series forecasting tasks. This paper aims to provide insight into various DL methods geared towards improving the performance in energy time-series forecasting tasks, with special emphasis in Greek Energy Market, and equip the reader with the necessary knowledge to apply these methods in practice.

Approximating functions of a large number of variables poses particular challenges often subsumed under the term ``Curse of Dimensionality'' (CoD). Unless the approximated function exhibits a very high level of smoothness the CoD can be avoided only by exploiting some typically hidden {\em structural sparsity}. In this paper we propose a general framework for new model classes of functions in high dimensions. They are based on suitable notions of {\em compositional dimension-sparsity} quantifying, on a continuous level, approximability by compositions with certain structural properties. In particular, this describes scenarios where deep neural networks can avoid the CoD. The relevance of these concepts is demonstrated for {\em solution manifolds} of parametric transport equations. For such PDEs parameter-to-solution maps do not enjoy the type of high order regularity that helps to avoid the CoD by more conventional methods in other model scenarios. Compositional sparsity is shown to serve as the key mechanism forn proving that sparsity of problem data is inherited in a quantifiable way by the solution manifold. In particular, one obtains convergence rates for deep neural network realizations showing that the CoD is indeed avoided.

In this paper, we present the adaptive physics-informed neural networks (PINNs) for resolving three dimensional (3D) dynamic thermo-mechanical coupling problems in large-size-ratio functionally graded materials (FGMs). The physical laws described by coupled governing equations and the constraints imposed by the initial and boundary conditions are leveraged to form the loss function of PINNs by means of the automatic differentiation algorithm, and an adaptive loss balancing scheme is introduced to improve the performance of PINNs. The adaptive PINNs are meshfree and trained on batches of randomly sampled collocation points, which is the key feature and superiority of the approach, since mesh-based methods will encounter difficulties in solving problems with large size ratios. The developed methodology is tested for several 3D thermo-mechanical coupling problems in large-size-ratio FGMs, and the numerical results demonstrate that the adaptive PINNs are effective and reliable for dealing with coupled problems in coating structures with large size ratios up to 109, as well as complex large-size-ratio geometries such as the electrostatic comb, the airplane and the submarine.

Over the past decade, domain adaptation has become a widely studied branch of transfer learning that aims to improve performance on target domains by leveraging knowledge from the source domain. Conventional domain adaptation methods often assume access to both source and target domain data simultaneously, which may not be feasible in real-world scenarios due to privacy and confidentiality concerns. As a result, the research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years, which only utilizes the source-trained model and unlabeled target data to adapt to the target domain. Despite the rapid explosion of SFDA work, yet there has no timely and comprehensive survey in the field. To fill this gap, we provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme based on the framework of transfer learning. Instead of presenting each approach independently, we modularize several components of each method to more clearly illustrate their relationships and mechanics in light of the composite properties of each method. Furthermore, we compare the results of more than 30 representative SFDA methods on three popular classification benchmarks, namely Office-31, Office-home, and VisDA, to explore the effectiveness of various technical routes and the combination effects among them. Additionally, we briefly introduce the applications of SFDA and related fields. Drawing from our analysis of the challenges facing SFDA, we offer some insights into future research directions and potential settings.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.

The U-Net was presented in 2015. With its straight-forward and successful architecture it quickly evolved to a commonly used benchmark in medical image segmentation. The adaptation of the U-Net to novel problems, however, comprises several degrees of freedom regarding the exact architecture, preprocessing, training and inference. These choices are not independent of each other and substantially impact the overall performance. The present paper introduces the nnU-Net ('no-new-Net'), which refers to a robust and self-adapting framework on the basis of 2D and 3D vanilla U-Nets. We argue the strong case for taking away superfluous bells and whistles of many proposed network designs and instead focus on the remaining aspects that make out the performance and generalizability of a method. We evaluate the nnU-Net in the context of the Medical Segmentation Decathlon challenge, which measures segmentation performance in ten disciplines comprising distinct entities, image modalities, image geometries and dataset sizes, with no manual adjustments between datasets allowed. At the time of manuscript submission, nnU-Net achieves the highest mean dice scores across all classes and seven phase 1 tasks (except class 1 in BrainTumour) in the online leaderboard of the challenge.

Multivariate time series forecasting is extensively studied throughout the years with ubiquitous applications in areas such as finance, traffic, environment, etc. Still, concerns have been raised on traditional methods for incapable of modeling complex patterns or dependencies lying in real word data. To address such concerns, various deep learning models, mainly Recurrent Neural Network (RNN) based methods, are proposed. Nevertheless, capturing extremely long-term patterns while effectively incorporating information from other variables remains a challenge for time-series forecasting. Furthermore, lack-of-explainability remains one serious drawback for deep neural network models. Inspired by Memory Network proposed for solving the question-answering task, we propose a deep learning based model named Memory Time-series network (MTNet) for time series forecasting. MTNet consists of a large memory component, three separate encoders, and an autoregressive component to train jointly. Additionally, the attention mechanism designed enable MTNet to be highly interpretable. We can easily tell which part of the historic data is referenced the most.

北京阿比特科技有限公司