亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we present the adaptive physics-informed neural networks (PINNs) for resolving three dimensional (3D) dynamic thermo-mechanical coupling problems in large-size-ratio functionally graded materials (FGMs). The physical laws described by coupled governing equations and the constraints imposed by the initial and boundary conditions are leveraged to form the loss function of PINNs by means of the automatic differentiation algorithm, and an adaptive loss balancing scheme is introduced to improve the performance of PINNs. The adaptive PINNs are meshfree and trained on batches of randomly sampled collocation points, which is the key feature and superiority of the approach, since mesh-based methods will encounter difficulties in solving problems with large size ratios. The developed methodology is tested for several 3D thermo-mechanical coupling problems in large-size-ratio FGMs, and the numerical results demonstrate that the adaptive PINNs are effective and reliable for dealing with coupled problems in coating structures with large size ratios up to 109, as well as complex large-size-ratio geometries such as the electrostatic comb, the airplane and the submarine.

相關內容

In this study, we consider a class of non-autonomous time-fractional partial advection-diffusion-reaction (TF-ADR) equations with Caputo type fractional derivative. To obtain the numerical solution of the model problem, we apply the non-symmetric interior penalty Galerkin (NIPG) method in space on a uniform mesh and the L1-scheme in time on a graded mesh. It is demonstrated that the computed solution is discretely stable. Superconvergence of error estimates for the proposed method are obtained using the discrete energy-norm. Also, we have applied the proposed method to solve semilinear problems after linearizing by the Newton linearization process. The theoretical results are verified through numerical experiments.

In this paper, to the best of our knowledge, we make the first attempt at studying the parametric semilinear elliptic eigenvalue problems with the parametric coefficient and some power-type nonlinearities. The parametric coefficient is assumed to have an affine dependence on the countably many parameters with an appropriate class of sequences of functions. In this paper, we obtain the upper bound estimation for the mixed derivatives of the ground eigenpairs that has the same form obtained recently for the linear eigenvalue problem. The three most essential ingredients for this estimation are the parametric analyticity of the ground eigenpairs, the uniform boundedness of the ground eigenpairs, and the uniform positive differences between ground eigenvalues of linear operators. All these three ingredients need new techniques and a careful investigation of the nonlinear eigenvalue problem that will be presented in this paper. As an application, considering each parameter as a uniformly distributed random variable, we estimate the expectation of the eigenpairs using a randomly shifted quasi-Monte Carlo lattice rule and show the dimension-independent error bound.

In this paper we propose a new finite element discretization for the two-field formulation of poroelasticity which uses the elastic displacement and the pore pressure as primary variables. The main goal is to develop a numerical method with small problem sizes which still achieve key features such as parameter-robustness, local mass conservation, and robust preconditionor construction. For this we combine a nonconforming finite element and the interior over-stabilized enriched Galerkin methods with a suitable stabilization term. Robust a priori error estimates and parameter-robust preconditioner construction are proved, and numerical results illustrate our theoretical findings.

We present a novel method for learning reduced-order models of dynamical systems using nonlinear manifolds. First, we learn the manifold by identifying nonlinear structure in the data through a general representation learning problem. The proposed approach is driven by embeddings of low-order polynomial form. A projection onto the nonlinear manifold reveals the algebraic structure of the reduced-space system that governs the problem of interest. The matrix operators of the reduced-order model are then inferred from the data using operator inference. Numerical experiments on a number of nonlinear problems demonstrate the generalizability of the methodology and the increase in accuracy that can be obtained over reduced-order modeling methods that employ a linear subspace approximation.

We discuss probabilistic neural networks for unsupervised learning with a fixed internal representation as models for machine understanding. Here understanding is intended as mapping data to an already existing representation which encodes an {\em a priori} organisation of the feature space. We derive the internal representation by requiring that it satisfies the principles of maximal relevance and of maximal ignorance about how different features are combined. We show that, when hidden units are binary variables, these two principles identify a unique model -- the Hierarchical Feature Model (HFM) -- which is fully solvable and provides a natural interpretation in terms of features. We argue that learning machines with this architecture enjoy a number of interesting properties, like the continuity of the representation with respect to changes in parameters and data, the possibility to control the level of compression and the ability to support functions that go beyond generalisation. We explore the behaviour of the model with extensive numerical experiments and argue that models where the internal representation is fixed reproduce a learning modality which is qualitatively different from that of more traditional models such as Restricted Boltzmann Machines.

In recent years, the concept of introducing physics to machine learning has become widely popular. Most physics-inclusive ML-techniques however are still limited to a single geometry or a set of parametrizable geometries. Thus, there remains the need to train a new model for a new geometry, even if it is only slightly modified. With this work we introduce a technique with which it is possible to learn approximate solutions to the steady-state Navier--Stokes equations in varying geometries without the need of parametrization. This technique is based on a combination of a U-Net-like CNN and well established discretization methods from the field of the finite difference method.The results of our physics-aware CNN are compared to a state-of-the-art data-based approach. Additionally, it is also shown how our approach performs when combined with the data-based approach.

In this work, we address parametric non-stationary fluid dynamics problems within a model order reduction setting based on domain decomposition. Starting from the domain decomposition approach, we derive an optimal control problem, for which we present the convergence analysis. The snapshots for the high-fidelity model are obtained with the Finite Element discretisation, and the model order reduction is then proposed both in terms of time and physical parameters, with a standard POD-Galerkin projection. We test the proposed methodology on two fluid dynamics benchmarks: the non-stationary backward-facing step and lid-driven cavity flow. Finally, also in view of future works, we compare the intrusive POD--Galerkin approach with a non--intrusive approach based on Neural Networks.

Algorithms for solving the linear classification problem have a long history, dating back at least to 1936 with linear discriminant analysis. For linearly separable data, many algorithms can obtain the exact solution to the corresponding 0-1 loss classification problem efficiently, but for data which is not linearly separable, it has been shown that this problem, in full generality, is NP-hard. Alternative approaches all involve approximations of some kind, including the use of surrogates for the 0-1 loss (for example, the hinge or logistic loss) or approximate combinatorial search, none of which can be guaranteed to solve the problem exactly. Finding efficient algorithms to obtain an exact i.e. globally optimal solution for the 0-1 loss linear classification problem with fixed dimension, remains an open problem. In research we report here, we detail the rigorous construction of a new algorithm, incremental cell enumeration (ICE), that can solve the 0-1 loss classification problem exactly in polynomial time. We prove correctness using concepts from the theory of hyperplane arrangements and oriented matroids. We demonstrate the effectiveness of this algorithm on synthetic and real-world datasets, showing optimal accuracy both in and out-of-sample, in practical computational time. We also empirically demonstrate how the use of approximate upper bound leads to polynomial time run-time improvements to the algorithm whilst retaining exactness. To our knowledge, this is the first, rigorously-proven polynomial time, practical algorithm for this long-standing problem.

In this paper, we investigate the impact of compression on stochastic gradient algorithms for machine learning, a technique widely used in distributed and federated learning. We underline differences in terms of convergence rates between several unbiased compression operators, that all satisfy the same condition on their variance, thus going beyond the classical worst-case analysis. To do so, we focus on the case of least-squares regression (LSR) and analyze a general stochastic approximation algorithm for minimizing quadratic functions relying on a random field. We consider weak assumptions on the random field, tailored to the analysis (specifically, expected H\"older regularity), and on the noise covariance, enabling the analysis of various randomizing mechanisms, including compression. We then extend our results to the case of federated learning. More formally, we highlight the impact on the convergence of the covariance $\mathfrak{C}_{\mathrm{ania}}$ of the additive noise induced by the algorithm. We demonstrate despite the non-regularity of the stochastic field, that the limit variance term scales with $\mathrm{Tr}(\mathfrak{C}_{\mathrm{ania}} H^{-1})/K$ (where $H$ is the Hessian of the optimization problem and $K$ the number of iterations) generalizing the rate for the vanilla LSR case where it is $\sigma^2 \mathrm{Tr}(H H^{-1}) / K = \sigma^2 d / K$ (Bach and Moulines, 2013). Then, we analyze the dependency of $\mathfrak{C}_{\mathrm{ania}}$ on the compression strategy and ultimately its impact on convergence, first in the centralized case, then in two heterogeneous FL frameworks.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司