亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we propose a new finite element discretization for the two-field formulation of poroelasticity which uses the elastic displacement and the pore pressure as primary variables. The main goal is to develop a numerical method with small problem sizes which still achieve key features such as parameter-robustness, local mass conservation, and robust preconditionor construction. For this we combine a nonconforming finite element and the interior over-stabilized enriched Galerkin methods with a suitable stabilization term. Robust a priori error estimates and parameter-robust preconditioner construction are proved, and numerical results illustrate our theoretical findings.

相關內容

We address the classical inverse problem of recovering the position and shape of obstacles immersed in a planar Stokes flow using boundary measurements. We prove that this problem can be transformed into a shape-from-moments problem to which ad hoc reconstruction methods can be applied. The effectiveness of this approach is confirmed by numerical tests that show significant improvements over those available in the literature to date.

In this paper we revisit one of the prototypical tasks for characterizing the structure of noise in quantum devices, estimating the eigenvalues of an $n$-qubit Pauli noise channel. Prior work (Chen et al., 2022) established exponential lower bounds for this task for algorithms with limited quantum memory. We first improve upon their lower bounds and show: (1) Any algorithm without quantum memory must make $\Omega(2^n/\epsilon^2)$ measurements to estimate each eigenvalue within error $\epsilon$. This is tight and implies the randomized benchmarking protocol is optimal, resolving an open question of (Flammia and Wallman, 2020). (2) Any algorithm with $\le k$ ancilla qubits of quantum memory must make $\Omega(2^{(n-k)/3})$ queries to the unknown channel. Crucially, unlike in (Chen et al., 2022), our bound holds even if arbitrary adaptive control and channel concatenation are allowed. In fact these lower bounds, like those of (Chen et al., 2022), hold even for the easier hypothesis testing problem of determining whether the underlying channel is completely depolarizing or has exactly one other nontrivial eigenvalue. Surprisingly, we show that: (3) With only $k=2$ ancilla qubits of quantum memory, there is an algorithm that solves this hypothesis testing task with high probability using a single measurement. Note that (3) does not contradict (2) as the protocol concatenates exponentially many queries to the channel before the measurement. This result suggests a novel mechanism by which channel concatenation and $O(1)$ qubits of quantum memory could work in tandem to yield striking speedups for quantum process learning that are not possible for quantum state learning.

We construct a family of Markov decision processes for which the policy iteration algorithm needs an exponential number of improving switches with Dantzig's rule, with Bland's rule, and with the Largest Increase pivot rule. This immediately translates to a family of linear programs for which the simplex algorithm needs an exponential number of pivot steps with the same three pivot rules. Our results yield a unified construction that simultaneously reproduces well-known lower bounds for these classical pivot rules, and we are able to infer that any (deterministic or randomized) combination of them cannot avoid an exponential worst-case behavior. Regarding the policy iteration algorithm, pivot rules typically switch multiple edges simultaneously and our lower bound for Dantzig's rule and the Largest Increase rule, which perform only single switches, seem novel. Regarding the simplex algorithm, the individual lower bounds were previously obtained separately via deformed hypercube constructions. In contrast to previous bounds for the simplex algorithm via Markov decision processes, our rigorous analysis is reasonably concise.

The main topic of this paper are algorithms for computing Nash equilibria. We cast our particular methods as instances of a general algorithmic abstraction, namely, a method we call {\em algorithmic boosting}, which is also relevant to other fixed-point computation problems. Algorithmic boosting is the principle of computing fixed points by taking (long-run) averages of iterated maps and it is a generalization of exponentiation. We first define our method in the setting of nonlinear maps. Secondly, we restrict attention to convergent linear maps (for computing dominant eigenvectors, for example, in the PageRank algorithm) and show that our algorithmic boosting method can set in motion {\em exponential speedups in the convergence rate}. Thirdly, we show that algorithmic boosting can convert a (weak) non-convergent iterator to a (strong) convergent one. We also consider a {\em variational approach} to algorithmic boosting providing tools to convert a non-convergent continuous flow to a convergent one. Then, by embedding the construction of averages in the design of the iterated map, we constructively prove the existence of Nash equilibria (and, therefore, Brouwer fixed points). We then discuss implementations of averaging and exponentiation, an important matter even for the scalar case. We finally discuss a relationship between dominant (PageRank) eigenvectors and Nash equilibria.

The numerical solution of continuum damage mechanics (CDM) problems suffers from convergence-related challenges during the material softening stage, and consequently existing iterative solvers are subject to a trade-off between computational expense and solution accuracy. In this work, we present a novel unified arc-length (UAL) method, and we derive the formulation of the analytical tangent matrix and governing system of equations for both local and non-local gradient damage problems. Unlike existing versions of arc-length solvers that monolithically scale the external force vector, the proposed method treats the latter as an independent variable and determines the position of the system on the equilibrium path based on all the nodal variations of the external force vector. This approach renders the proposed solver substantially more efficient and robust than existing solvers used in CDM problems. We demonstrate the considerable advantages of the proposed algorithm through several benchmark 1D problems with sharp snap-backs and 2D examples under various boundary conditions and loading scenarios. The proposed UAL approach exhibits a superior ability of overcoming critical increments along the equilibrium path. Moreover, the proposed UAL method is 1-2 orders of magnitude faster than force-controlled arc-length and monolithic Newton-Raphson solvers.

In this paper we revisit the classical Cauchy problem for Laplace's equation as well as two further related problems in the light of regularisation of this highly ill-conditioned problem by replacing integer derivatives with fractional ones. We do so in the spirit of quasi reversibility, replacing a classically severely ill-posed PDE problem by a nearby well-posed or only mildly ill-posed one. In order to be able to make use of the known stabilising effect of one-dimensional fractional derivatives of Abel type we work in a particular rectangular (in higher space dimensions cylindrical) geometry. We start with the plain Cauchy problem of reconstructing the values of a harmonic function inside this domain from its Dirichlet and Neumann trace on part of the boundary (the cylinder base) and explore three options for doing this with fractional operators. The two other related problems are the recovery of a free boundary and then this together with simultaneous recovery of the impedance function in the boundary condition. Our main technique here will be Newton's method. The paper contains numerical reconstructions and convergence results for the devised methods.

In this paper, we present a polynomial-complexity algorithm to construct a special orthogonal matrix for the deterministic remote state preparation (DRSP) of an arbitrary n-qubit state, and prove that if n>3, such matrices do not exist. Firstly, the construction problem is split into two sub-problems, i.e., finding a solution of a semi-orthogonal matrix and generating all semi-orthogonal matrices. Through giving the definitions and properties of the matching operators, it is proved that the orthogonality of a special matrix is equivalent to the cooperation of multiple matching operators, and then the construction problem is reduced to the problem of solving an XOR linear equation system, which reduces the construction complexity from exponential to polynomial level. Having proved that each semi-orthogonal matrix can be simplified into a unique form, we use the proposed algorithm to confirm that the unique form does not have any solution when n>3, which means it is infeasible to construct such a special orthogonal matrix for the DRSP of an arbitrary n-qubit state.

In this paper, a high-order approximation to Caputo-type time-fractional diffusion equations involving an initial-time singularity of the solution is proposed. At first, we employ a numerical algorithm based on the Lagrange polynomial interpolation to approximate the Caputo derivative on the non-uniform mesh. Then truncation error rate and the optimal grading constant of the approximation on a graded mesh are obtained as $\min\{4-\alpha,r\alpha\}$ and $\frac{4-\alpha}{\alpha}$, respectively, where $\alpha\in(0,1)$ is the order of fractional derivative and $r\geq 1$ is the mesh grading parameter. Using this new approximation, a difference scheme for the Caputo-type time-fractional diffusion equation on graded temporal mesh is formulated. The scheme proves to be uniquely solvable for general $r$. Then we derive the unconditional stability of the scheme on uniform mesh. The convergence of the scheme, in particular for $r=1$, is analyzed for non-smooth solutions and concluded for smooth solutions. Finally, the accuracy of the scheme is verified by analyzing the error through a few numerical examples.

To improve the robustness of transformer neural networks used for temporal-dynamics prediction of chaotic systems, we propose a novel attention mechanism called easy attention which we demonstrate in time-series reconstruction and prediction. As a consequence of the fact that self attention only makes useof the inner product of queries and keys, it is demonstrated that the keys, queries and softmax are not necessary for obtaining the attention score required to capture long-term dependencies in temporal sequences. Through implementing singular-value decomposition (SVD) on the softmax attention score, we further observe that the self attention compresses contribution from both queries and keys in the spanned space of the attention score. Therefore, our proposed easy-attention method directly treats the attention scores as learnable parameters. This approach produces excellent results when reconstructing and predicting the temporal dynamics of chaotic systems exhibiting more robustness and less complexity than the self attention or the widely-used long short-term memory (LSTM) network. Our results show great potential for applications in more complex high-dimensional dynamical systems. Keywords: Machine Learning, Transformer, Self Attention, Koopman Operator, Chaotic System.

We propose an approach to compute inner and outer-approximations of the sets of values satisfying constraints expressed as arbitrarily quantified formulas. Such formulas arise for instance when specifying important problems in control such as robustness, motion planning or controllers comparison. We propose an interval-based method which allows for tractable but tight approximations. We demonstrate its applicability through a series of examples and benchmarks using a prototype implementation.

北京阿比特科技有限公司