亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In the age of technology, data is an increasingly important resource. This importance is growing in the field of Artificial Intelligence (AI), where sub fields such as Machine Learning (ML) need more and more data to achieve better results. Internet of Things (IoT) is the connection of sensors and smart objects to collect and exchange data, in addition to achieving many other tasks. A huge amount of the resource desired, data, is stored in mobile devices, sensors and other Internet of Things (IoT) devices, but remains there due to data protection restrictions. At the same time these devices do not have enough data or computational capacity to train good models. Moreover, transmitting, storing and processing all this data on a centralised server is problematic. Federated Learning (FL) provides an innovative solution that allows devices to learn in a collaborative way. More importantly, it accomplishes this without violating data protection laws. FL is currently growing, and there are several solutions that implement it. This article presents a prototype of a FL solution where the IoT devices used were raspberry pi boards. The results compare the performance of a solution of this type with those obtained in traditional approaches. In addition, the FL solution performance was tested in a hostile environment. A convolutional neural network (CNN) and a image data set were used. The results show the feasibility and usability of these techniques, although in many cases they do not reach the performance of traditional approaches.

相關內容

Reasoning, a crucial aspect of NLP research, has not been adequately addressed by prevailing models including Large Language Model. Conversation reasoning, as a critical component of it, remains largely unexplored due to the absence of a well-designed cognitive model. In this paper, inspired by intuition theory on conversation cognition, we develop a conversation cognitive model (CCM) that explains how each utterance receives and activates channels of information recursively. Besides, we algebraically transformed CCM into a structural causal model (SCM) under some mild assumptions, rendering it compatible with various causal discovery methods. We further propose a probabilistic implementation of the SCM for utterance-level relation reasoning. By leveraging variational inference, it explores substitutes for implicit causes, addresses the issue of their unobservability, and reconstructs the causal representations of utterances through the evidence lower bounds. Moreover, we constructed synthetic and simulated datasets incorporating implicit causes and complete cause labels, alleviating the current situation where all available datasets are implicit-causes-agnostic. Extensive experiments demonstrate that our proposed method significantly outperforms existing methods on synthetic, simulated, and real-world datasets. Finally, we analyze the performance of CCM under latent confounders and propose theoretical ideas for addressing this currently unresolved issue.

Sonification is a data visualization technique which expresses data attributes via psychoacoustic parameters, which are non-speech audio signals used to convey information. This paper investigates the binary estimation of cognitive load induced by psychoacoustic parameters conveying the focus level of an astronomical image via Electroencephalogram (EEG) embeddings. Employing machine learning and deep learning methodologies, we demonstrate that EEG signals are reliable for (a) binary estimation of cognitive load, (b) isolating easy vs difficult visual-to-auditory perceptual mappings, and (c) capturing perceptual similarities among psychoacoustic parameters. Our key findings reveal that (1) EEG embeddings can reliably measure cognitive load, achieving a peak F1-score of 0.98; (2) Extreme focus levels are easier to detect via auditory mappings than intermediate ones, and (3) psychoacoustic parameters inducing comparable cognitive load levels tend to generate similar EEG encodings.

The rise of large foundation models, trained on extensive datasets, is revolutionizing the field of AI. Models such as SAM, DALL-E2, and GPT-4 showcase their adaptability by extracting intricate patterns and performing effectively across diverse tasks, thereby serving as potent building blocks for a wide range of AI applications. Autonomous driving, a vibrant front in AI applications, remains challenged by the lack of dedicated vision foundation models (VFMs). The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs in this field. This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions. Through a systematic analysis of over 250 papers, we dissect essential techniques for VFM development, including data preparation, pre-training strategies, and downstream task adaptation. Moreover, we explore key advancements such as NeRF, diffusion models, 3D Gaussian Splatting, and world models, presenting a comprehensive roadmap for future research. To empower researchers, we have built and maintained //github.com/zhanghm1995/Forge_VFM4AD, an open-access repository constantly updated with the latest advancements in forging VFMs for autonomous driving.

Information extraction techniques, including named entity recognition (NER) and relation extraction (RE), are crucial in many domains to support making sense of vast amounts of unstructured text data by identifying and connecting relevant information. Such techniques can assist researchers in extracting valuable insights. In this paper, we introduce the Entity-aware Masking for Biomedical Relation Extraction (EMBRE) method for biomedical relation extraction, as applied in the context of the BioRED challenge Task 1, in which human-annotated entities are provided as input. Specifically, we integrate entity knowledge into a deep neural network by pretraining the backbone model with an entity masking objective. We randomly mask named entities for each instance and let the model identify the masked entity along with its type. In this way, the model is capable of learning more specific knowledge and more robust representations. Then, we utilize the pre-trained model as our backbone to encode language representations and feed these representations into two multilayer perceptron (MLPs) to predict the logits for relation and novelty, respectively. The experimental results demonstrate that our proposed method can improve the performances of entity pair, relation and novelty extraction over our baseline.

This paper studies the problem of the lightweight image semantic communication system that is deployed on Internet of Things (IoT) devices. In the considered system model, devices must use semantic communication techniques to support user behavior recognition in ultimate video service with high data transmission efficiency. However, it is computationally expensive for IoT devices to deploy semantic codecs due to the complex calculation processes of deep learning (DL) based codec training and inference. To make it affordable for IoT devices to deploy semantic communication systems, we propose an attention-based UNet enabled lightweight image semantic communication (LSSC) system, which achieves low computational complexity and small model size. In particular, we first let the LSSC system train the codec at the edge server to reduce the training computation load on IoT devices. Then, we introduce the convolutional block attention module (CBAM) to extract the image semantic features and decrease the number of downsampling layers thus reducing the floating-point operations (FLOPs). Finally, we experimentally adjust the structure of the codec and find out the optimal number of downsampling layers. Simulation results show that the proposed LSSC system can reduce the semantic codec FLOPs by 14%, and reduce the model size by 55%, with a sacrifice of 3% accuracy, compared to the baseline. Moreover, the proposed scheme can achieve a higher transmission accuracy than the traditional communication scheme in the low channel signal-to-noise (SNR) region.

The conversion of content from one language to another utilizing a computer system is known as Machine Translation (MT). Various techniques have come up to ensure effective translations that retain the contextual and lexical interpretation of the source language. End-to-end Neural Machine Translation (NMT) is a popular technique and it is now widely used in real-world MT systems. Massive amounts of parallel datasets (sentences in one language alongside translations in another) are required for MT systems. These datasets are crucial for an MT system to learn linguistic structures and patterns of both languages during the training phase. One such dataset is Samanantar, the largest publicly accessible parallel dataset for Indian languages (ILs). Since the corpus has been gathered from various sources, it contains many incorrect translations. Hence, the MT systems built using this dataset cannot perform to their usual potential. In this paper, we propose an algorithm to remove mistranslations from the training corpus and evaluate its performance and efficiency. Two Indic languages (ILs), namely, Hindi (HIN) and Odia (ODI) are chosen for the experiment. A baseline NMT system is built for these two ILs, and the effect of different dataset sizes is also investigated. The quality of the translations in the experiment is evaluated using standard metrics such as BLEU, METEOR, and RIBES. From the results, it is observed that removing the incorrect translation from the dataset makes the translation quality better. It is also noticed that, despite the fact that the ILs-English and English-ILs systems are trained using the same corpus, ILs-English works more effectively across all the evaluation metrics.

The time and effort involved in hand-designing deep neural networks is immense. This has prompted the development of Neural Architecture Search (NAS) techniques to automate this design. However, NAS algorithms tend to be slow and expensive; they need to train vast numbers of candidate networks to inform the search process. This could be alleviated if we could partially predict a network's trained accuracy from its initial state. In this work, we examine the overlap of activations between datapoints in untrained networks and motivate how this can give a measure which is usefully indicative of a network's trained performance. We incorporate this measure into a simple algorithm that allows us to search for powerful networks without any training in a matter of seconds on a single GPU, and verify its effectiveness on NAS-Bench-101, NAS-Bench-201, NATS-Bench, and Network Design Spaces. Our approach can be readily combined with more expensive search methods; we examine a simple adaptation of regularised evolutionary search. Code for reproducing our experiments is available at //github.com/BayesWatch/nas-without-training.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

We introduce a new language representation model called BERT, which stands for Bidirectional Encoder Representations from Transformers. Unlike recent language representation models, BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly conditioning on both left and right context in all layers. As a result, the pre-trained BERT model can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide range of tasks, such as question answering and language inference, without substantial task-specific architecture modifications. BERT is conceptually simple and empirically powerful. It obtains new state-of-the-art results on eleven natural language processing tasks, including pushing the GLUE score to 80.5% (7.7% point absolute improvement), MultiNLI accuracy to 86.7% (4.6% absolute improvement), SQuAD v1.1 question answering Test F1 to 93.2 (1.5 point absolute improvement) and SQuAD v2.0 Test F1 to 83.1 (5.1 point absolute improvement).

Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.

北京阿比特科技有限公司