亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent curriculum Reinforcement Learning (RL) has shown notable progress in solving complex tasks by proposing sequences of surrogate tasks. However, the previous approaches often face challenges when they generate curriculum goals in a high-dimensional space. Thus, they usually rely on manually specified goal spaces. To alleviate this limitation and improve the scalability of the curriculum, we propose a novel curriculum method that automatically defines the semantic goal space which contains vital information for the curriculum process, and suggests curriculum goals over it. To define the semantic goal space, our method discretizes continuous observations via vector quantized-variational autoencoders (VQ-VAE) and restores the temporal relations between the discretized observations by a graph. Concurrently, ours suggests uncertainty and temporal distance-aware curriculum goals that converges to the final goals over the automatically composed goal space. We demonstrate that the proposed method allows efficient explorations in an uninformed environment with raw goal examples only. Also, ours outperforms the state-of-the-art curriculum RL methods on data efficiency and performance, in various goal-reaching tasks even with ego-centric visual inputs.

相關內容

The minimal feature removal problem in the post-hoc explanation area aims to identify the minimal feature set (MFS). Prior studies using the greedy algorithm to calculate the minimal feature set lack the exploration of feature interactions under a monotonic assumption which cannot be satisfied in general scenarios. In order to address the above limitations, we propose a Cooperative Integrated Dynamic Refining method (CIDR) to efficiently discover minimal feature sets. Specifically, we design Cooperative Integrated Gradients (CIG) to detect interactions between features. By incorporating CIG and characteristics of the minimal feature set, we transform the minimal feature removal problem into a knapsack problem. Additionally, we devise an auxiliary Minimal Feature Refinement algorithm to determine the minimal feature set from numerous candidate sets. To the best of our knowledge, our work is the first to address the minimal feature removal problem in the field of natural language processing. Extensive experiments demonstrate that CIDR is capable of tracing representative minimal feature sets with improved interpretability across various models and datasets.

Large Language Models (LLMs) have revolutionized various industries by harnessing their power to improve productivity and facilitate learning across different fields. One intriguing application involves combining LLMs with visual models to create a novel approach to Human-Computer Interaction. The core idea of this system is to create a user-friendly platform that enables people to utilize ChatGPT's features in their everyday lives. uTalk is comprised of technologies like Whisper, ChatGPT, Microsoft Speech Services, and the state-of-the-art (SOTA) talking head system SadTalker. Users can engage in human-like conversation with a digital twin and receive answers to any questions. Also, uTalk could generate content by submitting an image and input (text or audio). This system is hosted on Streamlit, where users will be prompted to provide an image to serve as their AI assistant. Then, as the input (text or audio) is provided, a set of operations will produce a video of the avatar with the precise response. This paper outlines how SadTalker's run-time has been optimized by 27.69% based on 25 frames per second (FPS) generated videos and 38.38% compared to our 20FPS generated videos. Furthermore, the integration and parallelization of SadTalker and Streamlit have resulted in a 9.8% improvement compared to the initial performance of the system.

Recently, there has been an increased interest in NeRF methods which reconstruct differentiable representation of three-dimensional scenes. One of the main limitations of such methods is their inability to assess the confidence of the model in its predictions. In this paper, we propose a new neural network model for the formation of extended vector representations, called uSF, which allows the model to predict not only color and semantic label of each point, but also estimate the corresponding values of uncertainty. We show that with a small number of images available for training, a model quantifying uncertainty performs better than a model without such functionality. Code of the uSF approach is publicly available at //github.com/sevashasla/usf/.

As a class of fruitful approaches, diffusion probabilistic models (DPMs) have shown excellent advantages in high-resolution image reconstruction. On the other hand, masked autoencoders (MAEs), as popular self-supervised vision learners, have demonstrated simpler and more effective image reconstruction and transfer capabilities on downstream tasks. However, they all require extremely high training costs, either due to inherent high temporal-dependence (i.e., excessively long diffusion steps) or due to artificially low spatial-dependence (i.e., human-formulated high mask ratio, such as 0.75). To the end, this paper presents LMD, a faster image reconstruction framework with latent masking diffusion. First, we propose to project and reconstruct images in latent space through a pre-trained variational autoencoder, which is theoretically more efficient than in the pixel-based space. Then, we combine the advantages of MAEs and DPMs to design a progressive masking diffusion model, which gradually increases the masking proportion by three different schedulers and reconstructs the latent features from simple to difficult, without sequentially performing denoising diffusion as in DPMs or using fixed high masking ratio as in MAEs, so as to alleviate the high training time-consumption predicament. Our approach allows for learning high-capacity models and accelerate their training (by 3x or more) and barely reduces the original accuracy. Inference speed in downstream tasks also significantly outperforms the previous approaches.

Despite significant recent progress in the field of autonomous driving, modern methods still struggle and can incur serious accidents when encountering long-tail unforeseen events and challenging urban scenarios. On the one hand, large language models (LLM) have shown impressive reasoning capabilities that approach "Artificial General Intelligence". On the other hand, previous autonomous driving methods tend to rely on limited-format inputs (e.g. sensor data and navigation waypoints), restricting the vehicle's ability to understand language information and interact with humans. To this end, this paper introduces LMDrive, a novel language-guided, end-to-end, closed-loop autonomous driving framework. LMDrive uniquely processes and integrates multi-modal sensor data with natural language instructions, enabling interaction with humans and navigation software in realistic instructional settings. To facilitate further research in language-based closed-loop autonomous driving, we also publicly release the corresponding dataset which includes approximately 64K instruction-following data clips, and the LangAuto benchmark that tests the system's ability to handle complex instructions and challenging driving scenarios. Extensive closed-loop experiments are conducted to demonstrate LMDrive's effectiveness. To the best of our knowledge, we're the very first work to leverage LLMs for closed-loop end-to-end autonomous driving. Codes can be found at //github.com/opendilab/LMDrive

The Parameter-Efficient Fine-Tuning (PEFT) method, which adjusts or introduces fewer trainable parameters to calibrate pre-trained models on downstream tasks, has become a recent research interest. However, existing PEFT methods within the traditional fine-tiuning framework have two main shortcomings: 1) They overlook the explicit association between trainable parameters and downstream task knowledge. 2) They neglect the interaction between the intrinsic task-agnostic knowledge of pre-trained models and the task-specific knowledge in downstream tasks. To address this gap, we propose a novel fine-tuning framework, named GIST, in a plug-and-play manner. Specifically, our framework first introduces a trainable token, called the Gist token, when applying PEFT methods on downstream tasks. This token serves as an aggregator of the task-specific knowledge learned by the PEFT methods and forms an explicit association with downstream knowledge. Furthermore, to facilitate explicit interaction between task-agnostic and task-specific knowledge, we introduce the concept of Knowledge Interaction via a Bidirectional Kullback-Leibler Divergence objective. As a result, PEFT methods within our framework can make the pre-trained model understand downstream tasks more comprehensively by leveraging the knowledge interaction. Extensive experiments demonstrate the universality and scalability of our framework. Notably, on the VTAB-1K benchmark, we employ the Adapter (a prevalent PEFT method) within our GIST framework and achieve a performance boost of 2.25%, with an increase of only 0.8K parameters. The Code will be released.

Recent progress in large language models (LLMs) has demonstrated the ability to learn and leverage Internet-scale knowledge through pre-training with autoregressive models. Unfortunately, applying such models to settings with embodied agents, such as robots, is challenging due to their lack of experience with the physical world, inability to parse non-language observations, and ignorance of rewards or safety constraints that robots may require. On the other hand, language-conditioned robotic policies that learn from interaction data can provide the necessary grounding that allows the agent to be correctly situated in the real world, but such policies are limited by the lack of high-level semantic understanding due to the limited breadth of the interaction data available for training them. Thus, if we want to make use of the semantic knowledge in a language model while still situating it in an embodied setting, we must construct an action sequence that is both likely according to the language model and also realizable according to grounded models of the environment. We frame this as a problem similar to probabilistic filtering: decode a sequence that both has high probability under the language model and high probability under a set of grounded model objectives. We demonstrate how such grounded models can be obtained across three simulation and real-world domains, and that the proposed decoding strategy is able to solve complex, long-horizon embodiment tasks in a robotic setting by leveraging the knowledge of both models. The project's website can be found at grounded-decoding.github.io.

A new method called the Survival Beran-based Neural Importance Model (SurvBeNIM) is proposed. It aims to explain predictions of machine learning survival models, which are in the form of survival or cumulative hazard functions. The main idea behind SurvBeNIM is to extend the Beran estimator by incorporating the importance functions into its kernels and by implementing these importance functions as a set of neural networks which are jointly trained in an end-to-end manner. Two strategies of using and training the whole neural network implementing SurvBeNIM are proposed. The first one explains a single instance, and the neural network is trained for each explained instance. According to the second strategy, the neural network only learns once on all instances from the dataset and on all generated instances. Then the neural network is used to explain any instance in a dataset domain. Various numerical experiments compare the method with different existing explanation methods. A code implementing the proposed method is publicly available.

Survival Analysis (SA) constitutes the default method for time-to-event modeling due to its ability to estimate event probabilities of sparsely occurring events over time. In this work, we show how to improve the training and inference of SA models by decoupling their full expression into (1) an aggregated baseline hazard, which captures the overall behavior of a given population, and (2) independently distributed survival scores, which model idiosyncratic probabilistic dynamics of its given members, in a fully parametric setting. The proposed inference method is shown to dynamically handle right-censored observation horizons, and to achieve competitive performance when compared to other state-of-the-art methods in a variety of real-world datasets, including computationally inefficient Deep Learning-based SA methods and models that require MCMC for inference. Nevertheless, our method achieves robust results from the outset, while not being subjected to fine-tuning or hyperparameter optimization.

Federated Learning (FL), a distributed machine learning technique has recently experienced tremendous growth in popularity due to its emphasis on user data privacy. However, the distributed computations of FL can result in constrained communication and drawn-out learning processes, necessitating the client-server communication cost optimization. The ratio of chosen clients and the quantity of local training passes are two hyperparameters that have a significant impact on FL performance. Due to different training preferences across various applications, it can be difficult for FL practitioners to manually select such hyperparameters. In our research paper, we introduce FedAVO, a novel FL algorithm that enhances communication effectiveness by selecting the best hyperparameters leveraging the African Vulture Optimizer (AVO). Our research demonstrates that the communication costs associated with FL operations can be substantially reduced by adopting AVO for FL hyperparameter adjustment. Through extensive evaluations of FedAVO on benchmark datasets, we show that FedAVO achieves significant improvement in terms of model accuracy and communication round, particularly with realistic cases of Non-IID datasets. Our extensive evaluation of the FedAVO algorithm identifies the optimal hyperparameters that are appropriately fitted for the benchmark datasets, eventually increasing global model accuracy by 6% in comparison to the state-of-the-art FL algorithms (such as FedAvg, FedProx, FedPSO, etc.).

北京阿比特科技有限公司