Large Language Models (LLMs) have revolutionized various industries by harnessing their power to improve productivity and facilitate learning across different fields. One intriguing application involves combining LLMs with visual models to create a novel approach to Human-Computer Interaction. The core idea of this system is to create a user-friendly platform that enables people to utilize ChatGPT's features in their everyday lives. uTalk is comprised of technologies like Whisper, ChatGPT, Microsoft Speech Services, and the state-of-the-art (SOTA) talking head system SadTalker. Users can engage in human-like conversation with a digital twin and receive answers to any questions. Also, uTalk could generate content by submitting an image and input (text or audio). This system is hosted on Streamlit, where users will be prompted to provide an image to serve as their AI assistant. Then, as the input (text or audio) is provided, a set of operations will produce a video of the avatar with the precise response. This paper outlines how SadTalker's run-time has been optimized by 27.69% based on 25 frames per second (FPS) generated videos and 38.38% compared to our 20FPS generated videos. Furthermore, the integration and parallelization of SadTalker and Streamlit have resulted in a 9.8% improvement compared to the initial performance of the system.
The Butterfly Effect, a concept originating from chaos theory, underscores how small changes can have significant and unpredictable impacts on complex systems. In the context of AI fairness and bias, the Butterfly Effect can stem from a variety of sources, such as small biases or skewed data inputs during algorithm development, saddle points in training, or distribution shifts in data between training and testing phases. These seemingly minor alterations can lead to unexpected and substantial unfair outcomes, disproportionately affecting underrepresented individuals or groups and perpetuating pre-existing inequalities. Moreover, the Butterfly Effect can amplify inherent biases within data or algorithms, exacerbate feedback loops, and create vulnerabilities for adversarial attacks. Given the intricate nature of AI systems and their societal implications, it is crucial to thoroughly examine any changes to algorithms or input data for potential unintended consequences. In this paper, we envision both algorithmic and empirical strategies to detect, quantify, and mitigate the Butterfly Effect in AI systems, emphasizing the importance of addressing these challenges to promote fairness and ensure responsible AI development.
While Large Language Models (LLMs) have demonstrated their proficiency in complex reasoning tasks, their performance in dynamic, interactive, and competitive scenarios - such as business strategy and stock market analysis - remains underexplored. To bridge this gap, we formally explore the dynamic reasoning capabilities of LLMs for decision-making in rapidly evolving environments. We introduce two game theory-based pilot challenges that mirror the complexities of real-world dynamic decision-making. These challenges are well-defined, enabling clear, controllable, and precise evaluation of LLMs' dynamic reasoning abilities. Through extensive experiments, we find that existing reasoning methods tend to falter in dynamic settings that require k-level thinking - a key concept not tackled by previous works. To address this, we propose a novel reasoning approach for LLMs, named "K-Level Reasoning". This approach adopts the perspective of rivals to recursively employ k-level thinking based on available historical information, which significantly improves the prediction accuracy of rivals' subsequent moves and informs more strategic decision-making. This research not only sets a robust quantitative benchmark for the assessment of dynamic reasoning but also markedly enhances the proficiency of LLMs in dynamic contexts.
Table understanding capability of Large Language Models (LLMs) has been extensively studied through the task of question-answering (QA) over tables. Typically, only a small part of the whole table is relevant to derive the answer for a given question. The irrelevant parts act as noise and are distracting information, resulting in sub-optimal performance due to the vulnerability of LLMs to noise. To mitigate this, we propose CABINET (Content RelevAnce-Based NoIse ReductioN for TablE QuesTion-Answering) - a framework to enable LLMs to focus on relevant tabular data by suppressing extraneous information. CABINET comprises an Unsupervised Relevance Scorer (URS), trained differentially with the QA LLM, that weighs the table content based on its relevance to the input question before feeding it to the question-answering LLM (QA LLM). To further aid the relevance scorer, CABINET employs a weakly supervised module that generates a parsing statement describing the criteria of rows and columns relevant to the question and highlights the content of corresponding table cells. CABINET significantly outperforms various tabular LLM baselines, as well as GPT3-based in-context learning methods, is more robust to noise, maintains outperformance on tables of varying sizes, and establishes new SoTA performance on WikiTQ, FeTaQA, and WikiSQL datasets. We release our code and datasets at //github.com/Sohanpatnaik106/CABINET_QA.
Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of their training data, architectures, and development undisclosed. Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs. To this end, this technical report details the first release of OLMo, a state-of-the-art, truly Open Language Model and its framework to build and study the science of language modeling. Unlike most prior efforts that have only released model weights and inference code, we release OLMo and the whole framework, including training data and training and evaluation code. We hope this release will empower and strengthen the open research community and inspire a new wave of innovation.
Combining the strengths of many existing predictors to obtain a Mixture of Experts which is superior to its individual components is an effective way to improve the performance without having to develop new architectures or train a model from scratch. However, surprisingly, we find that na\"ively combining expert object detectors in a similar way to Deep Ensembles, can often lead to degraded performance. We identify that the primary cause of this issue is that the predictions of the experts do not match their performance, a term referred to as miscalibration. Consequently, the most confident detector dominates the final predictions, preventing the mixture from leveraging all the predictions from the experts appropriately. To address this, when constructing the Mixture of Experts, we propose to combine their predictions in a manner which reflects the individual performance of the experts; an objective we achieve by first calibrating the predictions before filtering and refining them. We term this approach the Mixture of Calibrated Experts and demonstrate its effectiveness through extensive experiments on 5 different detection tasks using a variety of detectors, showing that it: (i) improves object detectors on COCO and instance segmentation methods on LVIS by up to $\sim 2.5$ AP; (ii) reaches state-of-the-art on COCO test-dev with $65.1$ AP and on DOTA with $82.62$ $\mathrm{AP_{50}}$; (iii) outperforms single models consistently on recent detection tasks such as Open Vocabulary Object Detection.
Various constraints of Static Random Access Memory (SRAM) are leading to consider new memory technologies as candidates for building on-chip shared last-level caches (SLLCs). Spin-Transfer Torque RAM (STT-RAM) is currently postulated as the prime contender due to its better energy efficiency, smaller die footprint and higher scalability. However, STT-RAM also exhibits some drawbacks, like slow and energy-hungry write operations, that need to be mitigated. In this work we address these shortcomings by leveraging a new management mechanism for STT-RAM SLLCs. This approach is based on the previous observation that the stream of references arriving at the SLLC of a Chip MultiProcessor (CMP) exhibits reuse locality, i.e., those blocks referenced several times manifest high probability of forthcoming reuse. In this paper, we employ a cache management mechanism that selects the contents of the SLLC aimed to exploit reuse locality instead of temporal locality. Specifically, our proposal consists in the inclusion of a Reuse Detector between private cache levels and the STT-RAM SLLC to detect blocks that do not exhibit reuse, in order to avoid their insertion in the SLLC, hence reducing the number of write operations and the energy consumption in the STT-RAM. Our evaluation reveals that our scheme reports on average, energy reductions in the SLLC in the range of 37-30\%, additional energy savings in the main memory in the range of 6-8\% and performance improvements of 3\% up to 14\% (16-core) compared to an STT-RAM SLLC baseline where no reuse detector is employed. More importantly, our approach outperforms DASCA, the state-of-the-art STT-RAM SLLC management, reporting SLLC energy savings in the range of 4-11\% higher than those of DASCA, delivering higher performance in the range of 1.5-14\%, and additional improvements in DRAM energy consumption in the range of 2-9\% higher than DASCA.
Mathematical reasoning serves as a cornerstone for assessing the fundamental cognitive capabilities of human intelligence. In recent times, there has been a notable surge in the development of Large Language Models (LLMs) geared towards the automated resolution of mathematical problems. However, the landscape of mathematical problem types is vast and varied, with LLM-oriented techniques undergoing evaluation across diverse datasets and settings. This diversity makes it challenging to discern the true advancements and obstacles within this burgeoning field. This survey endeavors to address four pivotal dimensions: i) a comprehensive exploration of the various mathematical problems and their corresponding datasets that have been investigated; ii) an examination of the spectrum of LLM-oriented techniques that have been proposed for mathematical problem-solving; iii) an overview of factors and concerns affecting LLMs in solving math; and iv) an elucidation of the persisting challenges within this domain. To the best of our knowledge, this survey stands as one of the first extensive examinations of the landscape of LLMs in the realm of mathematics, providing a holistic perspective on the current state, accomplishments, and future challenges in this rapidly evolving field.
The increased utilization of Artificial Intelligence (AI) solutions brings with it inherent risks, such as misclassification and sub-optimal execution time performance, due to errors introduced in their deployment infrastructure because of problematic configuration and software faults. On top of that, AI methods such as Deep Neural Networks (DNNs) are utilized to perform demanding, resource-intensive and even safety-critical tasks, and in order to effectively increase the performance of the DNN models deployed, a variety of Machine Learning (ML) compilers have been developed, allowing compatibility of DNNs with a variety of hardware acceleration devices, such as GPUs and TPUs. Furthermore the correctness of the compilation process should be verified. In order to allow developers and researchers to explore the robustness of DNN models deployed on different hardware accelerators via ML compilers, in this paper we propose MutateNN, a tool that provides mutation testing and model analysis features in the context of deployment on different hardware accelerators. To demonstrate the capabilities of MutateNN, we focus on the image recognition domain by applying mutation testing to 7 well-established models utilized for image classification. We instruct 21 mutations of 6 different categories, and deploy our mutants on 4 different hardware acceleration devices of varying capabilities. Our results indicate that models are proven robust to changes related to layer modifications and arithmetic operators, while presenting discrepancies of up to 90.3% in mutants related to conditional operators. We also observed unexpectedly severe performance degradation on mutations related to arithmetic types of variables, leading the mutants to produce the same classifications for all dataset inputs.
Emulating chip functionality before silicon production is crucial, especially with the increasing prevalence of RISC-V-based designs. FPGAs are promising candidates for such purposes due to their high-speed and reconfigurable architecture. In this paper, we introduce our Makinote, an FPGA-based Cluster platform, hosted at Barcelona Supercomputing Center (BSC-CNS), which is composed of a large number of FPGAs (in total 96 AMD/Xilinx Alveo U55c) to emulate massive size RTL designs (up to 750M ASIC cells). In addition, we introduce our FPGA shell as a powerful tool to facilitate the utilization of such a large FPGA cluster with minimal effort needed by the designers. The proposed FPGA shell provides an easy-to-use interface for the RTL developers to rapidly port such design into several FPGAs by automatically connecting to the necessary ports, e.g., PCIe Gen4, DRAM (DDR4 and HBM), ETH10g/100g. Moreover, specific drivers for exploiting RISC-V based architectures are provided within the set of tools associated with the FPGA shell. We release the tool online for further extensions. We validate the efficiency of our hardware platform (i.e., FPGA cluster) and the software tool (i.e., FPGA Shell) by emulating a RISC-V processor and experimenting HPC Challenge application running on 32 FPGAs. Our results demonstrate that the performance improves by 8 times over the single-FPGA case.
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.