This study explores the intersection of information technology-based self-monitoring (ITSM) and emotional responses in chronic care. It critiques the lack of theoretical depth in current ITSM research and proposes a dynamic emotion process theory to understand ITSM's impact on users' emotions. Utilizing computational grounded theory and machine learning analysis of hypertension app reviews, the research seeks to extend emotion theory by examining ITSM stimuli and their influence on emotional episodes, moving beyond discrete emotion models towards a continuous, nuanced understanding of emotional responses.
We study Whitney-type estimates for approximation of convex functions in the uniform norm on various convex multivariate domains while paying a particular attention to the dependence of the involved constants on the dimension and the geometry of the domain.
By abstracting over well-known properties of De Bruijn's representation with nameless dummies, we design a new theory of syntax with variable binding and capture-avoiding substitution. We propose it as a simpler alternative to Fiore, Plotkin, and Turi's approach, with which we establish a strong formal link. We also show that our theory easily incorporates simple types and equations between terms.
In this paper we consider a nonlinear poroelasticity model that describes the quasi-static mechanical behaviour of a fluid-saturated porous medium whose permeability depends on the divergence of the displacement. Such nonlinear models are typically used to study biological structures like tissues, organs, cartilage and bones, which are known for a nonlinear dependence of their permeability/hydraulic conductivity on solid dilation. We formulate (extend to the present situation) one of the most popular splitting schemes, namely the fixed-stress split method for the iterative solution of the coupled problem. The method is proven to converge linearly for sufficiently small time steps under standard assumptions. The error contraction factor then is strictly less than one, independent of the Lam\'{e} parameters, Biot and storage coefficients if the hydraulic conductivity is a strictly positive, bounded and Lipschitz-continuous function.
This study proposes a unified optimization-based planning framework that addresses the precise and efficient navigation of a controlled object within a constrained region, while contending with obstacles. We focus on handling two collision avoidance problems, i.e., the object not colliding with obstacles and not colliding with boundaries of the constrained region. The object or obstacle is denoted as a union of convex polytopes and ellipsoids, and the constrained region is denoted as an intersection of such convex sets. Using these representations, collision avoidance can be approached by formulating explicit constraints that separate two convex sets, or ensure that a convex set is contained in another convex set, referred to as separating constraints and containing constraints, respectively. We propose to use the hyperplane separation theorem to formulate differentiable separating constraints, and utilize the S-procedure and geometrical methods to formulate smooth containing constraints. We state that compared to the state of the art, the proposed formulations allow a considerable reduction in nonlinear program size and geometry-based initialization in auxiliary variables used to formulate collision avoidance constraints. Finally, the efficacy of the proposed unified planning framework is evaluated in two contexts, autonomous parking in tractor-trailer vehicles and overtaking on curved lanes. The results in both cases exhibit an improved computational performance compared to existing methods.
Measures of association between cortical regions based on activity signals provide useful information for studying brain functional connectivity. Difficulties occur with signals of electric neuronal activity, where an observed signal is a mixture, i.e. an instantaneous weighted average of the true, unobserved signals from all regions, due to volume conduction and low spatial resolution. This is why measures of lagged association are of interest, since at least theoretically, "lagged association" is of physiological origin. In contrast, the actual physiological instantaneous zero-lag association is masked and confounded by the mixing artifact. A minimum requirement for a measure of lagged association is that it must not tend to zero with an increase of strength of true instantaneous physiological association. Such biased measures cannot tell apart if a change in its value is due to a change in lagged or a change in instantaneous association. An explicit testable definition for frequency domain lagged connectivity between two multivariate time series is proposed. It is endowed with two important properties: it is invariant to non-singular linear transformations of each vector time series separately, and it is invariant to instantaneous association. As a first sanity check: in the case of two univariate time series, the new definition leads back to the bivariate lagged coherence of 2007 (eqs 25 and 26 in //doi.org/10.48550/arXiv.0706.1776). As a second stronger sanity check: in the case of a univariate and multivariate vector time series, the new measure presented here leads back to the original multivariate lagged coherence in equation 31 of the same 2007 publication (which trivially includes the bivariate case).
We study operator - or noncommutative - variants of constraint satisfaction problems (CSPs). These higher-dimensional variants are a core topic of investigation in quantum information, where they arise as nonlocal games and entangled multiprover interactive proof systems (MIP*). The idea of higher-dimensional relaxations of CSPs is also important in the classical literature. For example since the celebrated work of Goemans and Williamson on Max-Cut, higher dimensional vector relaxations have been central in the design of approximation algorithms for classical CSPs. We introduce a framework for designing approximation algorithms for noncommutative CSPs. Prior to this work Max-$2$-Lin$(k)$ was the only family of noncommutative CSPs known to be efficiently solvable. This work is the first to establish approximation ratios for a broader class of noncommutative CSPs. In the study of classical CSPs, $k$-ary decision variables are often represented by $k$-th roots of unity, which generalise to the noncommutative setting as order-$k$ unitary operators. In our framework, using representation theory, we develop a way of constructing unitary solutions from SDP relaxations, extending the pioneering work of Tsirelson on XOR games. Then, we introduce a novel rounding scheme to transform these solutions to order-$k$ unitaries. Our main technical innovation here is a theorem guaranteeing that, for any set of unitary operators, there exists a set of order-$k$ unitaries that closely mimics it. As an integral part of the rounding scheme, we prove a random matrix theory result that characterises the distribution of the relative angles between eigenvalues of random unitaries using tools from free probability.
In this note, we present an abstract approach to study asymptotic orders for adaptive approximations with respect to a monotone set function $\mathfrak{J}$ defined on dyadic cubes. We determine the exact upper order in terms of the critical value of the corresponding $\mathfrak{J}$-partition function, and we are able to provide upper and lower bounds in term of fractal-geometric quantities. With properly chosen $\mathfrak{J}$, our new approach has applications in many different areas of mathematics, including the spectral theory of Krein-Feller operators, quantization dimensions of compactly supported probability measures, and the exact asymptotic order for Kolmogorov, Gelfand and linear widths for Sobolev embeddings into $L_{\mu}^p$-spaces.
Speech emotion recognition (SER) systems aim to recognize human emotional state during human-computer interaction. Most existing SER systems are trained based on utterance-level labels. However, not all frames in an audio have affective states consistent with utterance-level label, which makes it difficult for the model to distinguish the true emotion of the audio and perform poorly. To address this problem, we propose a frame-level emotional state alignment method for SER. First, we fine-tune HuBERT model to obtain a SER system with task-adaptive pretraining (TAPT) method, and extract embeddings from its transformer layers to form frame-level pseudo-emotion labels with clustering. Then, the pseudo labels are used to pretrain HuBERT. Hence, the each frame output of HuBERT has corresponding emotional information. Finally, we fine-tune the above pretrained HuBERT for SER by adding an attention layer on the top of it, which can focus only on those frames that are emotionally more consistent with utterance-level label. The experimental results performed on IEMOCAP indicate that our proposed method performs better than state-of-the-art (SOTA) methods.
Functional magnetic resonance imaging (fMRI) is a neuroimaging technique known for its ability to capture brain activity non-invasively and at fine spatial resolution (2-3mm). Cortical surface fMRI (cs-fMRI) is a recent development of fMRI that focuses on signals from tissues that have neuronal activities, as opposed to the whole brain. cs-fMRI data is plagued with non-stationary spatial correlations and long temporal dependence which, if inadequately accounted for, can hinder downstream statistical analyses. We propose a fully integrated approach that captures both spatial non-stationarity and varying ranges of temporal dependence across regions of interest. More specifically, we impose non-stationary spatial priors on the latent activation fields and model temporal dependence via fractional Gaussian errors of varying Hurst parameters, which can be studied through a wavelet transformation and its coefficients' variances at different scales. We demonstrate the performance of our proposed approach through simulations and an application to a visual working memory task cs-fMRI dataset.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.