亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When computing the gradients of a quantum neural network using the parameter-shift rule, the cost function needs to be calculated twice for the gradient with respect to a single adjustable parameter of the network. When the total number of parameters is high, the quantum circuit for the computation has to be adjusted and run for many times. Here we propose an approach to compute all the gradients using a single circuit only, with a much reduced circuit depth and less classical registers. We also demonstrate experimentally, on both real quantum hardware and simulator, that our approach has the advantages that the circuit takes a significantly shorter time to compile than the conventional approach, resulting in a speedup on the total runtime.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The generation of curves and surfaces from given data is a well-known problem in Computer-Aided Design that can be approached using subdivision schemes. They are powerful tools that allow obtaining new data from the initial one by means of simple calculations. However, in some applications, the collected data are given with noise and most of schemes are not adequate to process them. In this paper, we present some new families of binary univariate linear subdivision schemes using weighted local polynomial regression. We study their properties, such as convergence, monotonicity, polynomial reproduction and approximation and denoising capabilities. For the convergence study, we develop some new theoretical results. Finally, some examples are presented to confirm the proven properties.

We prove a discrete analogue for the composition of the fractional integral and Caputo derivative. This result is relevant in numerical analysis of fractional PDEs when one discretizes the Caputo derivative with the so-called L1 scheme. The proof is based on asymptotic evaluation of the discrete sums with the use of the Euler-Maclaurin summation formula.

We consider network-based decentralized optimization problems, where each node in the network possesses a local function and the objective is to collectively attain a consensus solution that minimizes the sum of all the local functions. A major challenge in decentralized optimization is the reliance on communication which remains a considerable bottleneck in many applications. To address this challenge, we propose an adaptive randomized communication-efficient algorithmic framework that reduces the volume of communication by periodically tracking the disagreement error and judiciously selecting the most influential and effective edges at each node for communication. Within this framework, we present two algorithms: Adaptive Consensus (AC) to solve the consensus problem and Adaptive Consensus based Gradient Tracking (AC-GT) to solve smooth strongly convex decentralized optimization problems. We establish strong theoretical convergence guarantees for the proposed algorithms and quantify their performance in terms of various algorithmic parameters under standard assumptions. Finally, numerical experiments showcase the effectiveness of the framework in significantly reducing the information exchange required to achieve a consensus solution.

Stochastic optimization methods have been hugely successful in making large-scale optimization problems feasible when computing the full gradient is computationally prohibitive. Using the theory of modified equations for numerical integrators, we propose a class of stochastic differential equations that approximate the dynamics of general stochastic optimization methods more closely than the original gradient flow. Analyzing a modified stochastic differential equation can reveal qualitative insights about the associated optimization method. Here, we study mean-square stability of the modified equation in the case of stochastic coordinate descent.

This work considers Bayesian experimental design for the inverse boundary value problem of linear elasticity in a two-dimensional setting. The aim is to optimize the positions of compactly supported pressure activations on the boundary of the examined body in order to maximize the value of the resulting boundary deformations as data for the inverse problem of reconstructing the Lam\'e parameters inside the object. We resort to a linearized measurement model and adopt the framework of Bayesian experimental design, under the assumption that the prior and measurement noise distributions are mutually independent Gaussians. This enables the use of the standard Bayesian A-optimality criterion for deducing optimal positions for the pressure activations. The (second) derivatives of the boundary measurements with respect to the Lam\'e parameters and the positions of the boundary pressure activations are deduced to allow minimizing the corresponding objective function, i.e., the trace of the covariance matrix of the posterior distribution, by a gradient-based optimization algorithm. Two-dimensional numerical experiments are performed to demonstrate the functionality of our approach.

Estimating parameters from data is a fundamental problem in physics, customarily done by minimizing a loss function between a model and observed statistics. In scattering-based analysis, researchers often employ their domain expertise to select a specific range of wavevectors for analysis, a choice that can vary depending on the specific case. We introduce another paradigm that defines a probabilistic generative model from the beginning of data processing and propagates the uncertainty for parameter estimation, termed ab initio uncertainty quantification (AIUQ). As an illustrative example, we demonstrate this approach with differential dynamic microscopy (DDM) that extracts dynamical information through Fourier analysis at a selected range of wavevectors. We first show that DDM is equivalent to fitting a temporal variogram in the reciprocal space using a latent factor model as the generative model. Then we derive the maximum marginal likelihood estimator, which optimally weighs information at all wavevectors, therefore eliminating the need to select the range of wavevectors. Furthermore, we substantially reduce the computational cost by utilizing the generalized Schur algorithm for Toeplitz covariances without approximation. Simulated studies validate that AIUQ significantly improves estimation accuracy and enables model selection with automated analysis. The utility of AIUQ is also demonstrated by three distinct sets of experiments: first in an isotropic Newtonian fluid, pushing limits of optically dense systems compared to multiple particle tracking; next in a system undergoing a sol-gel transition, automating the determination of gelling points and critical exponent; and lastly, in discerning anisotropic diffusive behavior of colloids in a liquid crystal. These outcomes collectively underscore AIUQ's versatility to capture system dynamics in an efficient and automated manner.

We suggest a global perspective on dynamic network flow problems that takes advantage of the similarities to port-Hamiltonian dynamics. Dynamic minimum cost flow problems are formulated as open-loop optimal control problems for general port-Hamiltonian systems with possibly state-dependent system matrices. We prove well-posedness of these systems and characterize optimal controls by the first-order optimality system, which is the starting point for the derivation of an adjoint-based gradient descent algorithm. Our theoretical analysis is complemented by a proof of concept, where we apply the proposed algorithm to static minimum cost flow problems and dynamic minimum cost flow problems on a simple directed acyclic graph. We present numerical results to validate the approach.

Recently, a stability theory has been developed to study the linear stability of modified Patankar--Runge--Kutta (MPRK) schemes. This stability theory provides sufficient conditions for a fixed point of an MPRK scheme to be stable as well as for the convergence of an MPRK scheme towards the steady state of the corresponding initial value problem, whereas the main assumption is that the initial value is sufficiently close to the steady state. Initially, numerical experiments in several publications indicated that these linear stability properties are not only local, but even global, as is the case for general linear methods. Recently, however, it was discovered that the linear stability of the MPDeC(8) scheme is indeed only local in nature. Our conjecture is that this is a result of negative Runge--Kutta (RK) parameters of MPDeC(8) and that linear stability is indeed global, if the RK parameters are nonnegative. To support this conjecture, we examine the family of MPRK22($\alpha$) methods with negative RK parameters and show that even among these methods there are methods for which the stability properties are only local. However, this local linear stability is not observed for MPRK22($\alpha$) schemes with nonnegative Runge-Kutta parameters.

Applying parallel-in-time algorithms to multiscale Hamiltonian systems to obtain stable long time simulations is very challenging. In this paper, we present novel data-driven methods aimed at improving the standard parareal algorithm developed by Lion, Maday, and Turinici in 2001, for multiscale Hamiltonian systems. The first method involves constructing a correction operator to improve a given inaccurate coarse solver through solving a Procrustes problem using data collected online along parareal trajectories. The second method involves constructing an efficient, high-fidelity solver by a neural network trained with offline generated data. For the second method, we address the issues of effective data generation and proper loss function design based on the Hamiltonian function. We show proof-of-concept by applying the proposed methods to a Fermi-Pasta-Ulum (FPU) problem. The numerical results demonstrate that the Procrustes parareal method is able to produce solutions that are more stable in energy compared to the standard parareal. The neural network solver can achieve comparable or better runtime performance compared to numerical solvers of similar accuracy. When combined with the standard parareal algorithm, the improved neural network solutions are slightly more stable in energy than the improved numerical coarse solutions.

Missing data is frequently encountered in many areas of statistics. Propensity score weighting is a popular method for handling missing data. The propensity score method employs a response propensity model, but correct specification of the statistical model can be challenging in the presence of missing data. Doubly robust estimation is attractive, as the consistency of the estimator is guaranteed when either the outcome regression model or the propensity score model is correctly specified. In this paper, we first employ information projection to develop an efficient and doubly robust estimator under indirect model calibration constraints. The resulting propensity score estimator can be equivalently expressed as a doubly robust regression imputation estimator by imposing the internal bias calibration condition in estimating the regression parameters. In addition, we generalize the information projection to allow for outlier-robust estimation. Some asymptotic properties are presented. The simulation study confirms that the proposed method allows robust inference against not only the violation of various model assumptions, but also outliers. A real-life application is presented using data from the Conservation Effects Assessment Project.

北京阿比特科技有限公司