亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Missing data is frequently encountered in many areas of statistics. Propensity score weighting is a popular method for handling missing data. The propensity score method employs a response propensity model, but correct specification of the statistical model can be challenging in the presence of missing data. Doubly robust estimation is attractive, as the consistency of the estimator is guaranteed when either the outcome regression model or the propensity score model is correctly specified. In this paper, we first employ information projection to develop an efficient and doubly robust estimator under indirect model calibration constraints. The resulting propensity score estimator can be equivalently expressed as a doubly robust regression imputation estimator by imposing the internal bias calibration condition in estimating the regression parameters. In addition, we generalize the information projection to allow for outlier-robust estimation. Some asymptotic properties are presented. The simulation study confirms that the proposed method allows robust inference against not only the violation of various model assumptions, but also outliers. A real-life application is presented using data from the Conservation Effects Assessment Project.

相關內容

We explain the methodology used to create the data submitted to HuMob Challenge, a data analysis competition for human mobility prediction. We adopted a personalized model to predict the individual's movement trajectory from their data, instead of predicting from the overall movement, based on the hypothesis that human movement is unique to each person. We devised the features such as the date and time, activity time, days of the week, time of day, and frequency of visits to POI (Point of Interest). As additional features, we incorporated the movement of other individuals with similar behavior patterns through the employment of clustering. The machine learning model we adopted was the Support Vector Regression (SVR). We performed accuracy through offline assessment and carried out feature selection and parameter tuning. Although overall dataset provided consists of 100,000 users trajectory, our method use only 20,000 target users data, and do not need to use other 80,000 data. Despite the personalized model's traditional feature engineering approach, this model yields reasonably good accuracy with lower computational cost.

High-dimensional central limit theorems have been intensively studied with most focus being on the case where the data is sub-Gaussian or sub-exponential. However, heavier tails are omnipresent in practice. In this article, we study the critical growth rates of dimension $d$ below which Gaussian approximations are asymptotically valid but beyond which they are not. We are particularly interested in how these thresholds depend on the number of moments $m$ that the observations possess. For every $m\in(2,\infty)$, we construct i.i.d. random vectors $\textbf{X}_1,...,\textbf{X}_n$ in $\mathbb{R}^d$, the entries of which are independent and have a common distribution (independent of $n$ and $d$) with finite $m$th absolute moment, and such that the following holds: if there exists an $\varepsilon\in(0,\infty)$ such that $d/n^{m/2-1+\varepsilon}\not\to 0$, then the Gaussian approximation error (GAE) satisfies $$ \limsup_{n\to\infty}\sup_{t\in\mathbb{R}}\left[\mathbb{P}\left(\max_{1\leq j\leq d}\frac{1}{\sqrt{n}}\sum_{i=1}^n\textbf{X}_{ij}\leq t\right)-\mathbb{P}\left(\max_{1\leq j\leq d}\textbf{Z}_j\leq t\right)\right]=1,$$ where $\textbf{Z} \sim \mathsf{N}_d(\textbf{0}_d,\mathbf{I}_d)$. On the other hand, a result in Chernozhukov et al. (2023a) implies that the left-hand side above is zero if just $d/n^{m/2-1-\varepsilon}\to 0$ for some $\varepsilon\in(0,\infty)$. In this sense, there is a moment-dependent phase transition at the threshold $d=n^{m/2-1}$ above which the limiting GAE jumps from zero to one.

Whether class labels in a given data set correspond to meaningful clusters is crucial for the evaluation of clustering algorithms using real-world data sets. This property can be quantified by separability measures. A review of the existing literature shows that neither classification-based complexity measures nor cluster validity indices (CVIs) adequately incorporate the central aspects of separability for density-based clustering: between-class separation and within-class connectedness. A newly developed measure (density cluster separability index, DCSI) aims to quantify these two characteristics and can also be used as a CVI. Extensive experiments on synthetic data indicate that DCSI correlates strongly with the performance of DBSCAN measured via the adjusted rand index (ARI) but lacks robustness when it comes to multi-class data sets with overlapping classes that are ill-suited for density-based hard clustering. Detailed evaluation on frequently used real-world data sets shows that DCSI can correctly identify touching or overlapping classes that do not form meaningful clusters.

Insurers usually turn to generalized linear models for modelling claim frequency and severity data. Due to their success in other fields, machine learning techniques are gaining popularity within the actuarial toolbox. Our paper contributes to the literature on frequency-severity insurance pricing with machine learning via deep learning structures. We present a benchmark study on four insurance data sets with frequency and severity targets in the presence of multiple types of input features. We compare in detail the performance of: a generalized linear model on binned input data, a gradient-boosted tree model, a feed-forward neural network (FFNN), and the combined actuarial neural network (CANN). Our CANNs combine a baseline prediction established with a GLM and GBM, respectively, with a neural network correction. We explain the data preprocessing steps with specific focus on the multiple types of input features typically present in tabular insurance data sets, such as postal codes, numeric and categorical covariates. Autoencoders are used to embed the categorical variables into the neural network and we explore their potential advantages in a frequency-severity setting. Finally, we construct global surrogate models for the neural nets' frequency and severity models. These surrogates enable the translation of the essential insights captured by the FFNNs or CANNs to GLMs. As such, a technical tariff table results that can easily be deployed in practice.

In this paper the interpolating rational functions introduced by Floater and Hormann are generalized leading to a whole new family of rational functions depending on $\gamma$, an additional positive integer parameter. For $\gamma = 1$, the original Floater--Hormann interpolants are obtained. When $\gamma>1$ we prove that the new rational functions share a lot of the nice properties of the original Floater--Hormann functions. Indeed, for any configuration of nodes in a compact interval, they have no real poles, interpolate the given data, preserve the polynomials up to a certain fixed degree, and have a barycentric-type representation. Moreover, we estimate the associated Lebesgue constants in terms of the minimum ($h^*$) and maximum ($h$) distance between two consecutive nodes. It turns out that, in contrast to the original Floater-Hormann interpolants, for all $\gamma > 1$ we get uniformly bounded Lebesgue constants in the case of equidistant and quasi-equidistant nodes configurations (i.e., when $h\sim h^*$). For such configurations, as the number of nodes tends to infinity, we prove that the new interpolants ($\gamma>1$) uniformly converge to the interpolated function $f$, for any continuous function $f$ and all $\gamma>1$. The same is not ensured by the original FH interpolants ($\gamma=1$). Moreover, we provide uniform and pointwise estimates of the approximation error for functions having different degrees of smoothness. Numerical experiments illustrate the theoretical results and show a better error profile for less smooth functions compared to the original Floater-Hormann interpolants.

Indirect reciprocity is a mechanism that explains large-scale cooperation in human societies. In indirect reciprocity, an individual chooses whether or not to cooperate with another based on reputation information, and others evaluate the action as good or bad. Under what evaluation rule (called ``social norm'') cooperation evolves has long been of central interest in the literature. It has been reported that if individuals can share their evaluations (i.e., public reputation), social norms called ``leading eight'' can be evolutionarily stable. On the other hand, when they cannot share their evaluations (i.e., private assessment), the evolutionary stability of cooperation is still in question. To tackle this problem, we create a novel method to analyze the reputation structure in the population under private assessment. Specifically, we characterize each individual by two variables, ``goodness'' (what proportion of the population considers the individual as good) and ``self-reputation'' (whether an individual thinks of him/herself as good or bad), and analyze the stochastic process of how these two variables change over time. We discuss evolutionary stability of each of the leading eight social norms by studying the robustness against invasions of unconditional cooperators and defectors. We identify key pivots in those social norms for establishing a high level of cooperation or stable cooperation against mutants. Our finding gives an insight into how human cooperation is established in a real-world society.

Entropy maximization and free energy minimization are general physical principles for modeling the dynamics of various physical systems. Notable examples include modeling decision-making within the brain using the free-energy principle, optimizing the accuracy-complexity trade-off when accessing hidden variables with the information bottleneck principle (Tishby et al., 2000), and navigation in random environments using information maximization (Vergassola et al., 2007). Built on this principle, we propose a new class of bandit algorithms that maximize an approximation to the information of a key variable within the system. To this end, we develop an approximated analytical physics-based representation of an entropy to forecast the information gain of each action and greedily choose the one with the largest information gain. This method yields strong performances in classical bandit settings. Motivated by its empirical success, we prove its asymptotic optimality for the two-armed bandit problem with Gaussian rewards. Owing to its ability to encompass the system's properties in a global physical functional, this approach can be efficiently adapted to more complex bandit settings, calling for further investigation of information maximization approaches for multi-armed bandit problems.

We develop randomized matrix-free algorithms for estimating partial traces. Our algorithm improves on the typicality-based approach used in [T. Chen and Y-C. Cheng, Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems, J. Chem. Phys. 157, 064106 (2022)] by deflating important subspaces (e.g. corresponding to the low-energy eigenstates) explicitly. This results in a significant variance reduction for matrices with quickly decaying singular values. We then apply our algorithm to study the thermodynamics of several Heisenberg spin systems, particularly the entanglement spectrum and ergotropy.

State-of-the-art machine learning models can be vulnerable to very small input perturbations that are adversarially constructed. Adversarial training is an effective approach to defend against it. Formulated as a min-max problem, it searches for the best solution when the training data were corrupted by the worst-case attacks. Linear models are among the simple models where vulnerabilities can be observed and are the focus of our study. In this case, adversarial training leads to a convex optimization problem which can be formulated as the minimization of a finite sum. We provide a comparative analysis between the solution of adversarial training in linear regression and other regularization methods. Our main findings are that: (A) Adversarial training yields the minimum-norm interpolating solution in the overparameterized regime (more parameters than data), as long as the maximum disturbance radius is smaller than a threshold. And, conversely, the minimum-norm interpolator is the solution to adversarial training with a given radius. (B) Adversarial training can be equivalent to parameter shrinking methods (ridge regression and Lasso). This happens in the underparametrized region, for an appropriate choice of adversarial radius and zero-mean symmetrically distributed covariates. (C) For $\ell_\infty$-adversarial training -- as in square-root Lasso -- the choice of adversarial radius for optimal bounds does not depend on the additive noise variance. We confirm our theoretical findings with numerical examples.

Finding the optimal design of experiments in the Bayesian setting typically requires estimation and optimization of the expected information gain functional. This functional consists of one outer and one inner integral, separated by the logarithm function applied to the inner integral. When the mathematical model of the experiment contains uncertainty about the parameters of interest and nuisance uncertainty, (i.e., uncertainty about parameters that affect the model but are not themselves of interest to the experimenter), two inner integrals must be estimated. Thus, the already considerable computational effort required to determine good approximations of the expected information gain is increased further. The Laplace approximation has been applied successfully in the context of experimental design in various ways, and we propose two novel estimators featuring the Laplace approximation to alleviate the computational burden of both inner integrals considerably. The first estimator applies Laplace's method followed by a Laplace approximation, introducing a bias. The second estimator uses two Laplace approximations as importance sampling measures for Monte Carlo approximations of the inner integrals. Both estimators use Monte Carlo approximation for the remaining outer integral estimation. We provide three numerical examples demonstrating the applicability and effectiveness of our proposed estimators.

北京阿比特科技有限公司