Indirect reciprocity is a mechanism that explains large-scale cooperation in human societies. In indirect reciprocity, an individual chooses whether or not to cooperate with another based on reputation information, and others evaluate the action as good or bad. Under what evaluation rule (called ``social norm'') cooperation evolves has long been of central interest in the literature. It has been reported that if individuals can share their evaluations (i.e., public reputation), social norms called ``leading eight'' can be evolutionarily stable. On the other hand, when they cannot share their evaluations (i.e., private assessment), the evolutionary stability of cooperation is still in question. To tackle this problem, we create a novel method to analyze the reputation structure in the population under private assessment. Specifically, we characterize each individual by two variables, ``goodness'' (what proportion of the population considers the individual as good) and ``self-reputation'' (whether an individual thinks of him/herself as good or bad), and analyze the stochastic process of how these two variables change over time. We discuss evolutionary stability of each of the leading eight social norms by studying the robustness against invasions of unconditional cooperators and defectors. We identify key pivots in those social norms for establishing a high level of cooperation or stable cooperation against mutants. Our finding gives an insight into how human cooperation is established in a real-world society.
Quadratization of polynomial and nonpolynomial systems of ordinary differential equations is advantageous in a variety of disciplines, such as systems theory, fluid mechanics, chemical reaction modeling and mathematical analysis. A quadratization reveals new variables and structures of a model, which may be easier to analyze, simulate, control, and provides a convenient parametrization for learning. This paper presents novel theory, algorithms and software capabilities for quadratization of non-autonomous ODEs. We provide existence results, depending on the regularity of the input function, for cases when a quadratic-bilinear system can be obtained through quadratization. We further develop existence results and an algorithm that generalizes the process of quadratization for systems with arbitrary dimension that retain the nonlinear structure when the dimension grows. For such systems, we provide dimension-agnostic quadratization. An example is semi-discretized PDEs, where the nonlinear terms remain symbolically identical when the discretization size increases. As an important aspect for practical adoption of this research, we extended the capabilities of the QBee software towards both non-autonomous systems of ODEs and ODEs with arbitrary dimension. We present several examples of ODEs that were previously reported in the literature, and where our new algorithms find quadratized ODE systems with lower dimension than the previously reported lifting transformations. We further highlight an important area of quadratization: reduced-order model learning. This area can benefit significantly from working in the optimal lifting variables, where quadratic models provide a direct parametrization of the model that also avoids additional hyperreduction for the nonlinear terms. A solar wind example highlights these advantages.
While many phenomena in physics and engineering are formally high-dimensional, their long-time dynamics often live on a lower-dimensional manifold. The present work introduces an autoencoder framework that combines implicit regularization with internal linear layers and $L_2$ regularization (weight decay) to automatically estimate the underlying dimensionality of a data set, produce an orthogonal manifold coordinate system, and provide the mapping functions between the ambient space and manifold space, allowing for out-of-sample projections. We validate our framework's ability to estimate the manifold dimension for a series of datasets from dynamical systems of varying complexities and compare to other state-of-the-art estimators. We analyze the training dynamics of the network to glean insight into the mechanism of low-rank learning and find that collectively each of the implicit regularizing layers compound the low-rank representation and even self-correct during training. Analysis of gradient descent dynamics for this architecture in the linear case reveals the role of the internal linear layers in leading to faster decay of a "collective weight variable" incorporating all layers, and the role of weight decay in breaking degeneracies and thus driving convergence along directions in which no decay would occur in its absence. We show that this framework can be naturally extended for applications of state-space modeling and forecasting by generating a data-driven dynamic model of a spatiotemporally chaotic partial differential equation using only the manifold coordinates. Finally, we demonstrate that our framework is robust to hyperparameter choices.
Robust inferential methods based on divergences measures have shown an appealing trade-off between efficiency and robustness in many different statistical models. In this paper, minimum density power divergence estimators (MDPDEs) for the scale and shape parameters of the log-logistic distribution are considered. The log-logistic is a versatile distribution modeling lifetime data which is commonly adopted in survival analysis and reliability engineering studies when the hazard rate is initially increasing but then it decreases after some point. Further, it is shown that the classical estimators based on maximum likelihood (MLE) are included as a particular case of the MDPDE family. Moreover, the corresponding influence function of the MDPDE is obtained, and its boundlessness is proved, thus leading to robust estimators. A simulation study is carried out to illustrate the slight loss in efficiency of MDPDE with respect to MLE and, at besides, the considerable gain in robustness.
We note a fact that stiff systems or differential equations that have highly oscillatory solutions cannot be solved efficiently using conventional methods. In this paper, we study two new classes of exponential Runge-Kutta (ERK) integrators for efficiently solving stiff systems or highly oscillatory problems. We first present a novel class of explicit modified version of exponential Runge-Kutta (MVERK) methods based on the order conditions. Furthermore, we consider a class of explicit simplified version of exponential Runge-Kutta (SVERK) methods. Numerical results demonstrate the high efficiency of the explicit MVERK integrators and SVERK methods derived in this paper compared with the well-known explicit ERK integrators for stiff systems or highly oscillatory problems in the literature.
In this paper, two novel classes of implicit exponential Runge-Kutta (ERK) methods are studied for solving highly oscillatory systems. First of all, we analyze the symplectic conditions of two kinds of exponential integrators, and present a first-order symplectic method. In order to solve highly oscillatory problems, the highly accurate implicit ERK integrators (up to order four) are formulated by comparing the Taylor expansions of numerical and exact solutions, it is shown that the order conditions of two new kinds of exponential methods are identical to the order conditions of classical Runge-Kutta (RK) methods. Moreover, we investigate the linear stability properties of these exponential methods. Finally, numerical results not only present the long time energy preservation of the first-order symplectic method, but also illustrate the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.
We develop an NLP-based procedure for detecting systematic nonmeritorious consumer complaints, simply called systematic anomalies, among complaint narratives. While classification algorithms are used to detect pronounced anomalies, in the case of smaller and frequent systematic anomalies, the algorithms may falter due to a variety of reasons, including technical ones as well as natural limitations of human analysts. Therefore, as the next step after classification, we convert the complaint narratives into quantitative data, which are then analyzed using an algorithm for detecting systematic anomalies. We illustrate the entire procedure using complaint narratives from the Consumer Complaint Database of the Consumer Financial Protection Bureau.
We propose an innovative and generic methodology to analyse individual and collective behaviour through individual trajectory data. The work is motivated by the analysis of GPS trajectories of fishing vessels collected from regulatory tracking data in the context of marine biodiversity conservation and ecosystem-based fisheries management. We build a low-dimensional latent representation of trajectories using convolutional neural networks as non-linear mapping. This is done by training a conditional variational auto-encoder taking into account covariates. The posterior distributions of the latent representations can be linked to the characteristics of the actual trajectories. The latent distributions of the trajectories are compared with the Bhattacharyya coefficient, which is well-suited for comparing distributions. Using this coefficient, we analyse the variation of the individual behaviour of each vessel during time. For collective behaviour analysis, we build proximity graphs and use an extension of the stochastic block model for multiple networks. This model results in a clustering of the individuals based on their set of trajectories. The application to French fishing vessels enables us to obtain groups of vessels whose individual and collective behaviours exhibit spatio-temporal patterns over the period 2014-2018.
Experimental and observational studies often lead to spurious association between the outcome and independent variables describing the intervention, because of confounding to third-party factors. Even in randomized clinical trials, confounding might be unavoidable due to small sample sizes. Practically, this poses a problem, because it is either expensive to re-design and conduct a new study or even impossible to alleviate the contribution of some confounders due to e.g. ethical concerns. Here, we propose a method to consistently derive hypothetical studies that retain as many of the dependencies in the original study as mathematically possible, while removing any association of observed confounders to the independent variables. Using historic studies, we illustrate how the confounding-free scenario re-estimates the effect size of the intervention. The new effect size estimate represents a concise prediction in the hypothetical scenario which paves a way from the original data towards the design of future studies.
We study the statistical capacity of the classical binary perceptrons with general thresholds $\kappa$. After recognizing the connection between the capacity and the bilinearly indexed (bli) random processes, we utilize a recent progress in studying such processes to characterize the capacity. In particular, we rely on \emph{fully lifted} random duality theory (fl RDT) established in \cite{Stojnicflrdt23} to create a general framework for studying the perceptrons' capacities. Successful underlying numerical evaluations are required for the framework (and ultimately the entire fl RDT machinery) to become fully practically operational. We present results obtained in that directions and uncover that the capacity characterizations are achieved on the second (first non-trivial) level of \emph{stationarized} full lifting. The obtained results \emph{exactly} match the replica symmetry breaking predictions obtained through statistical physics replica methods in \cite{KraMez89}. Most notably, for the famous zero-threshold scenario, $\kappa=0$, we uncover the well known $\alpha\approx0.8330786$ scaled capacity.
This research aims to take advantage of artificial intelligence techniques in producing students assessment that is compatible with the different academic accreditations of the same program. The possibility of using generative artificial intelligence technology was studied to produce an academic accreditation compliant test the National Center for Academic Accreditation of Kingdom of Saudi Arabia and Accreditation Board for Engineering and Technology. A novel method was introduced to map the verbs used to create the questions introduced in the tests. The method allows a possibility of using the generative artificial intelligence technology to produce and check the validity of questions that measure educational outcomes. A questionnaire was distributed to ensure that the use of generative artificial intelligence to create exam questions is acceptable by the faculty members, as well as to ask about the acceptance of assistance in validating questions submitted by faculty members and amending them in accordance with academic accreditations. The questionnaire was distributed to faculty members of different majors in the Kingdom of Saudi Arabias universities. one hundred twenty responses obtained with eight five percentile approval percentage for generate complete exam questions by generative artificial intelligence . Whereas ninety eight percentage was the approval percentage for editing and improving already existed questions.