This research aims to take advantage of artificial intelligence techniques in producing students assessment that is compatible with the different academic accreditations of the same program. The possibility of using generative artificial intelligence technology was studied to produce an academic accreditation compliant test the National Center for Academic Accreditation of Kingdom of Saudi Arabia and Accreditation Board for Engineering and Technology. A novel method was introduced to map the verbs used to create the questions introduced in the tests. The method allows a possibility of using the generative artificial intelligence technology to produce and check the validity of questions that measure educational outcomes. A questionnaire was distributed to ensure that the use of generative artificial intelligence to create exam questions is acceptable by the faculty members, as well as to ask about the acceptance of assistance in validating questions submitted by faculty members and amending them in accordance with academic accreditations. The questionnaire was distributed to faculty members of different majors in the Kingdom of Saudi Arabias universities. one hundred twenty responses obtained with eight five percentile approval percentage for generate complete exam questions by generative artificial intelligence . Whereas ninety eight percentage was the approval percentage for editing and improving already existed questions.
The privacy in classical federated learning can be breached through the use of local gradient results by using engineered queries from the clients. However, quantum communication channels are considered more secure because the use of measurements in the data causes some loss of information, which can be detected. Therefore, the quantum version of federated learning can be used to provide more privacy. Additionally, sending an $N$ dimensional data vector through a quantum channel requires sending $\log N$ entangled qubits, which can provide exponential efficiency if the data vector is obtained as quantum states. In this paper, we propose a quantum federated learning model where fixed design quantum chips are operated based on the quantum states sent by a centralized server. Based on the coming superposition states, the clients compute and then send their local gradients as quantum states to the server, where they are aggregated to update parameters. Since the server does not send model parameters, but instead sends the operator as a quantum state, the clients are not required to share the model. This allows for the creation of asynchronous learning models. In addition, the model as a quantum state is fed into client-side chips directly; therefore, it does not require measurements on the upcoming quantum state to obtain model parameters in order to compute gradients. This can provide efficiency over the models where parameter vector is sent via classical or quantum channels and local gradients are obtained through the obtained values of these parameters.
Efficient allocation of resources to activities is pivotal in executing business processes but remains challenging. While resource allocation methodologies are well-established in domains like manufacturing, their application within business process management remains limited. Existing methods often do not scale well to large processes with numerous activities or optimize across multiple cases. This paper aims to address this gap by proposing two learning-based methods for resource allocation in business processes. The first method leverages Deep Reinforcement Learning (DRL) to learn near-optimal policies by taking action in the business process. The second method is a score-based value function approximation approach, which learns the weights of a set of curated features to prioritize resource assignments. To evaluate the proposed approaches, we first designed six distinct business processes with archetypal process flows and characteristics. These business processes were then connected to form three realistically sized business processes. We benchmarked our methods against traditional heuristics and existing resource allocation methods. The results show that our methods learn adaptive resource allocation policies that outperform or are competitive with the benchmarks in five out of six individual business processes. The DRL approach outperforms all benchmarks in all three composite business processes and finds a policy that is, on average, 13.1% better than the best-performing benchmark.
Polynomial approximations of functions are widely used in scientific computing. In certain applications, it is often desired to require the polynomial approximation to be non-negative (resp. non-positive), or bounded within a given range, due to constraints posed by the underlying physical problems. Efficient numerical methods are thus needed to enforce such conditions. In this paper, we discuss effective numerical algorithms for polynomial approximation under non-negativity constraints. We first formulate the constrained optimization problem, its primal and dual forms, and then discuss efficient first-order convex optimization methods, with a particular focus on high dimensional problems. Numerical examples are provided, for up to $200$ dimensions, to demonstrate the effectiveness and scalability of the methods.
Using well-known mathematical problems for encryption is a widely used technique because they are computationally hard and provide security against potential attacks on the encryption method. The subset sum problem (SSP) can be defined as finding a subset of integers from a given set, whose sum is equal to a specified integer. The classic SSP has various variants, one of which is the multiple-subset problem (MSSP). In the MSSP, the goal is to select items from a given set and distribute them among multiple bins, en-suring that the capacity of each bin is not exceeded while maximizing the total weight of the selected items. This approach addresses a related problem with a different perspective. Here a related different kind of problem is approached: given a set of sets A={A1, A2..., An}, find an integer s for which every subset of the given sets is summed up to, if such an integer exists. The problem is NP-complete when considering it as a variant of SSP. However, there exists an algorithm that is relatively efficient for known pri-vate keys. This algorithm is based on dispensing non-relevant values of the potential sums. In this paper we present the encryption scheme based on MSSP and present its novel usage and implementation in communication.
Optimization under uncertainty is important in many applications, particularly to inform policy and decision making in areas such as public health. A key source of uncertainty arises from the incorporation of environmental variables as inputs into computational models or simulators. Such variables represent uncontrollable features of the optimization problem and reliable decision making must account for the uncertainty they propagate to the simulator outputs. Often, multiple, competing objectives are defined from these outputs such that the final optimal decision is a compromise between different goals. Here, we present emulation-based optimization methodology for such problems that extends expected quantile improvement (EQI) to address multi-objective optimization. Focusing on the practically important case of two objectives, we use a sequential design strategy to identify the Pareto front of optimal solutions. Uncertainty from the environmental variables is integrated out using Monte Carlo samples from the simulator. Interrogation of the expected output from the simulator is facilitated by use of (Gaussian process) emulators. The methodology is demonstrated on an optimization problem from public health involving the dispersion of anthrax spores across a spatial terrain. Environmental variables include meteorological features that impact the dispersion, and the methodology identifies the Pareto front even when there is considerable input uncertainty.
In this work some advances in the theory of curvature of two-dimensional probability manifolds corresponding to families of distributions are proposed. It is proved that location-scale distributions are hyperbolic in the Information Geometry sense even when the generatrix is non-even or non-smooth. A novel formula is obtained for the computation of curvature in the case of exponential families: this formula implies some new flatness criteria in dimension 2. Finally, it is observed that many two parameter distributions, widely used in applications, are locally hyperbolic, which highlights the role of hyperbolic geometry in the study of commonly employed probability manifolds. These results have benefited from the use of explainable computational tools, which can substantially boost scientific productivity.
We study propositional proof systems with inference rules that formalize restricted versions of the ability to make assumptions that hold without loss of generality, commonly used informally to shorten proofs. Each system we study is built on resolution. They are called BC${}^-$, RAT${}^-$, SBC${}^-$, and GER${}^-$, denoting respectively blocked clauses, resolution asymmetric tautologies, set-blocked clauses, and generalized extended resolution - all "without new variables." They may be viewed as weak versions of extended resolution (ER) since they are defined by first generalizing the extension rule and then taking away the ability to introduce new variables. Except for SBC${}^-$, they are known to be strictly between resolution and extended resolution. Several separations between these systems were proved earlier by exploiting the fact that they effectively simulate ER. We answer the questions left open: We prove exponential lower bounds for SBC${}^-$ proofs of a binary encoding of the pigeonhole principle, which separates ER from SBC${}^-$. Using this new separation, we prove that both RAT${}^-$ and GER${}^-$ are exponentially separated from SBC${}^-$. This completes the picture of their relative strengths.
In modern computational materials science, deep learning has shown the capability to predict interatomic potentials, thereby supporting and accelerating conventional simulations. However, existing models typically sacrifice either accuracy or efficiency. Moreover, lightweight models are highly demanded for offering simulating systems on a considerably larger scale at reduced computational costs. A century ago, Felix Bloch demonstrated how leveraging the equivariance of the translation operation on a crystal lattice (with geometric symmetry) could significantly reduce the computational cost of determining wavefunctions and accurately calculate material properties. Here, we introduce a lightweight equivariant interaction graph neural network (LEIGNN) that can enable accurate and efficient interatomic potential and force predictions in crystals. Rather than relying on higher-order representations, LEIGNN employs a scalar-vector dual representation to encode equivariant features. By extracting both local and global structures from vector representations and learning geometric symmetry information, our model remains lightweight while ensuring prediction accuracy and robustness through the equivariance. Our results show that LEIGNN consistently outperforms the prediction performance of the representative baselines and achieves significant efficiency across diverse datasets, which include catalysts, molecules, and organic isomers. Finally, to further validate the predicted interatomic potentials from our model, we conduct classical molecular dynamics (MD) and ab initio MD simulation across various systems, including solid, liquid, and gas. It is found that LEIGNN can achieve the accuracy of ab initio MD and retain the computational efficiency of classical MD across all examined systems, demonstrating its accuracy, efficiency, and universality.
Deterministic communication is required for applications of several industry verticals including manufacturing, automotive, financial, and health care, etc. These applications rely on reliable and time-synchronized delivery of information among the communicating devices. Therefore, large delay variations in packet delivery or inaccuracies in time synchronization cannot be tolerated. In particular, the industrial revolution on digitization, connectivity of digital and physical systems, and flexible production design require deterministic and time-synchronized communication. A network supporting deterministic communication guarantees data delivery in a specified time with high reliability. The IEEE 802.1 TSN task group is developing standards to provide deterministic communication through IEEE 802 networks. The IEEE 802.1AS standard defines time synchronization mechanism for accurate distribution of time among the communicating devices. The time synchronization accuracy depends on the accurate calculation of the residence time which is the time between the ingress and the egress ports of the bridge and includes the processing, queuing, transmission, and link latency of the timing information. This paper discusses time synchronization mechanisms supported in current wired and wireless integrated systems.
Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.